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Abstract

We discuss the early history of B-splines with an arbitrary knot sequence, and of their

recurrence relations. These seem to have first appeared in papers of Popoviciu and Chakalov

from the 1930s.
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B-splines have been the object of mathematical study well before they made their
appearance in Schoenberg’s fundamental paper [Sc46]. In particular, cardinal B-
splines, that is, B-splines for a uniform knot sequence, introduced in [Sc46] have a
long history, nicely detailed in [BSS88], and already Schoenberg [Sc46, p. 68] traces
them back to Laplace (presumably to [L20, pp. 165–169]).

B-splines for an arbitrary knot sequence also appear in the literature well before
their introduction in [C47,CS47] and study in [CS66]; a prominent example is [Fa40].
Even the recurrence relations can be found in papers published well before
[dB72,Co72] though it does take the power of hindsight to see this clearly, as we hope
to show in this note.
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1. Popoviciu’s B-spline recurrence relation

In his doctoral thesis [P33]¼ [P34a] and various follow-ups, Tiberiu Popoviciu1

is concerned with interpolation to given data

ðxi; yiÞ; with x1o?oxm

by ðn þ 1Þ-convex, or, more generally, ðn þ 1Þ-non-concave functions (which he calls
convex, respectively non-concave, of order n). The latter, by definition, are those
functions whose ðn þ 1Þth divided difference

ðt0;y; tnþ1Þf
(in W. Kahan’s literal notation) is non-negative for any choice of n þ 2 (distinct)
points t0;y; tnþ1 in its domain. Popoviciu ascribes the introduction of this notion to
Eberhard Hopf’s dissertation [Ho26], claiming for himself only the credit of having
considered domains more general than just an interval. To be sure, Popoviciu is also
the first to use a specific terminology (‘convex of order n’) for what Hopf merely
refers to as having all ðn þ 1Þth divided differences positive.

Neither Popoviciu’s thesis nor his later lectures [P37] make any mention of the
functions we now call B-splines, and the much later summarizing book [P44] only
mentions them in passing [P44, p. 21]. So, the following discussion is based entirely
on his paper [P34b] which he calls a completion of the work begun in his thesis.

In the main part of the paper, Popoviciu only considers divided differences at
distinct points. This permits him to define the divided difference by

ðt0;y; tnþ1Þf ¼ Uðt; f Þ
VðtÞ

with

VðtÞ :¼ Vðt0;y; tnþ1Þ :¼ detðt j
i : i; j ¼ 0;y; n þ 1Þ

the Vandermonde determinant, and

Uðt; f Þ
the determinant of the matrix obtained from the above Vandermonde matrix by
replacing its last column by the vector ð f ðtiÞ: i ¼ 0;y; n þ 1Þ:

This definition readily shows that ðt0;y; tnþ1Þf is the leading coefficient in the
power form of the polynomial of degree pn þ 1 that agrees with f at the tj; but

Popoviciu makes no use of that fact.
In [P34b, p. 89], and for i ¼ 1;y;m � n � 1; he introduces functions Ci as

follows:

CiðxÞ :¼

0 on ðx1 :: xiÞ;Pk
r¼0

ð�1ÞrV
ðiþrÞ
i

Vi
ðx � xiþrÞn on ðxiþk :: xiþkþ1Þ; k ¼ 0;y; n;

0 on ðxiþnþ1 :: xmÞ;

8>>><
>>>: ð1Þ
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with

ða :: bÞ

the open interval with end points a and b; and with

Vi :¼ Vðxi;y; xiþnþ1Þ

and

V
ðkÞ
i :¼ Vðxi;y; xk�1; xkþ1;y; xiþnþ1Þ:

Now, directly from the above definition of the divided difference as a ratio of
determinants, we deduce thatXnþ1

r¼0

ð�1ÞrV
ðiþrÞ
i

Vi

f ðxiþrÞ ¼ ð�1Þnþ1 ðxi;y; xiþnþ1Þf :

So, fortunate in having the truncated power notation at our disposal, and realizing

that ðx � �Þn
þ ¼ ðx � �Þn þ ð�1Þnþ1ð� � xÞn

þ; we recognize (as Popoviciu eventually

may have, e.g., when writing [P44, p. 21]) that

CiðxÞ ¼ ðxi;y; xiþnþ1Þð� � xÞn
þ; ð2Þ

hence

ðn þ 1ÞCi ¼ Mi;nþ1;

the ith Curry–Schoenberg B-spline of order n þ 1 for the knot sequence ðx1;y; xmÞ;
normalized to integrate to 1, that is, Ci ¼ Mð�jxi;y; xiþnþ1Þ=ðn þ 1Þ: Working
directly with his definition of the Ci; and using nothing more than the well-known
explicit expression

Vðxi;y; xjÞ ¼
Y

ipmonpj

ðxn � xmÞ ð3Þ

for the Vandermonde determinant, Popoviciu proves (see [P34b, p. 93]) the relation

ðxnþjþ1 � xjÞCjðxÞ ¼ ðx � xjÞCj
0ðxÞ þ ðxnþjþ1 � xÞCjþ1

0ðxÞ; ð4Þ

where, as he says, the Cj
0 are defined just like the Cj; except that n is replaced by

n � 1: With that, we recognize in (4) the (for us) standard B-spline recurrence
relations. His proof of (4) (see [P34b, p. 91]) rests on nothing more than the ready
consequence (‘‘qu’on vérifie facilement’’) of (3) that

V 0ðrÞðxnþ2 � x2Þðxnþ2 � x3Þ?ðxnþ2 � xnþ1Þðx � x1Þ

� V 00ðrÞðx2 � x1Þðx3 � x1Þ?ðxnþ1 � x1Þðxnþ2 � xÞ ¼ V
ðrÞ
1 ðx � x1Þ; ð5Þ

with

V 0ðrÞ :¼ Vðx1;y; xr�1; xrþ1;y; xnþ1Þ

and

V 00ðrÞ :¼ Vðx2;y; xr�1; xrþ1;y; xnþ2Þ:
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To be sure, the last subscript in (5) should be r rather than 1 but, with that
correction, (5) can be verified and readily yields his Eq. (18):Xk

r¼1

ð�1Þr�1
V

ðrÞ
1 ðx � xrÞn ¼ ðxnþ2 � x2Þðxnþ2 � x3Þ?

ðxnþ2 � xnþ1Þðx � x1Þ
Xk

r¼1

ð�1Þr�1
V 0ðrÞðx � xrÞn�1

þ ðx2 � x1Þðx3 � x1Þ?ðxnþ1 � x1Þðxnþ2 � xÞ
Xk

r¼2

ð�1Þr�2
V 00ðrÞðx � xrÞn�1;

which is (4) written out for the interval ðxk :: xkþ1Þ and for i ¼ 1 in full detail.
Popoviciu uses the recurrence relation (4) to prove two things: (i) the strict positivity
of the Cj on their support (see [P34b, pp. 90–91]), and (ii) the fact that, for

xnþ1oxoxnþ2;Xnþ1

i¼1

ðxnþiþ1 � xiÞCiðxÞðx � xiþ1Þ?ðx � xiþnÞ ¼ ðx � xÞn ð6Þ

(see [P34b, p. 93]), that is, what we now call Marsden’s identity because of [Ma70].
The positivity of the Cj is of importance to Popoviciu since he has the following.

Theorem (Popoviciu [P34b, p. 94]). Assume that the data ððxi; yiÞ: i ¼ 1;y;mÞ are

non-concave of order n: Then these are the restriction to the xj of a function f non-

concave of order n if and only ifX
j

ljCjX0 on ðx1 :: xmÞ

implies thatX
j

lj ðxj;y; xjþnþ1ÞfX0:

These conditions for extendability of such data to a non-concave function of order
n on the closed interval ½x1 :: xm� he calls the convexity constraints of order n: The
theorem is now known to follow from general duality considerations. He is
interested in the strict positivity of the Cj on their support since this permits him to

uniformly approximate non-concave functions of order n by functions that are
(strictly) convex of order n:

The Marsden identity (6), Popoviciu uses to conclude that any f defined on
ðx1; x2;y; xmÞ and satisfying ðxj;y; xjþnþ1Þf ¼ CjðxÞ for all j and some x has an

extension of the form P þ ð� � xÞn
þ; with P the polynomial of degree pn that matches

f � ð� � xÞn
þ at x1;y; xnþ1; and this extension is evidently non-concave of order n:

(To be sure, Popoviciu actually considers various cases since he does not realize that

(see (2)) ðxj;y;xjþnþ1Þð� � xÞn
þ ¼ CjðxÞ for all j and that therefore f and ð� � xÞn

þ
differ on ðx1;y; xmÞ only by a polynomial of degree pn:) With this result in hand,
he proves the sufficiency part of his theorem by observing that the convexity
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constraints of order n demand that, whenever a hyperplane in Rm�n�1 through the

origin leaves the entire curve ½x1 :: xm�-Rm�n�1 : x/CðxÞ :¼ ðCjðxÞ : j ¼
1;y;m � n � 1Þ to one side, then also the vector ð ðxj;y; xjþnþ1Þf : j ¼ 1;y;

m � n � 1Þ must lie on that same side. This puts the latter vector into the closed cone
spanned by that curve, hence writable as a non-negative combination of suitable
points CðxkÞ; k ¼ 1;y;m � n � 1; thus showing that such f is extendable to a
function, non-concave of order n; of the form

P þ
Xm�n�1

k¼1

mkð� � xkÞn
þ

for some polynomial P of degree pn; some non-negative mk; and some
xkAðx1 :: xmÞ:

Any such function (but with arbitrary mk), Popoviciu calls an elementary function
of degree n with m � n � 1 vertices. Of course, we now call such a function a spline of
order n þ 1 with simple (interior) knots. Popoviciu takes it as obvious (see top of
[P34b, p. 90]) that any elementary function of degree n with vertices at the m points
x1;y; xm and vanishing outside the interval ½x1 :: xm� can be written as

P
j ljCj:

In [P34b, footnote on p. 91], Popoviciu claims that the recurrence relation
also provides immediately a proof of the fact that the Cj are ‘very positive’

(‘‘très positif’’) in the sense that, for each k ¼ j;y; j þ n; the Bernstein formPn
i¼0 Aið� � xkÞiðxkþ1 � �Þn�i for the polynomial that agrees with Cj on the interval

ðxk :: xkþ1Þ has all its coefficients positive. To be sure, this is not quite true for k ¼ j

since then Ai ¼ 0 for ion; nor for k ¼ j þ n since then Ai ¼ 0 for i40:
In a lengthy last chapter, Popoviciu considers in complete detail the problem when

x1 ¼ ? ¼ xnþ1 ¼ aob ¼ xnþ2 ¼ ? ¼ x2nþ2; using the fact that, in this case,

Cj ¼
n

j � 1

� 	
ðb � �Þn�jþ1ð� � aÞ j�1=ðb � aÞnþ1:

Finally, noteworthy from the spline point of view is the observation that, in [P34a,
p. 7], Popoviciu records (in less suggestive notation) the following almost immediate
consequence

ðtn � t0Þ ðt0;y; tnÞ

¼ ðtn � xÞ ðx; t1;y; tnÞ þ ðx� t0Þ ðt0;y; tn�1; xÞ; all x; ð7Þ
of the divided difference recurrence and deduces from it by induction that, for any
increasing refinement s of the increasing sequence t;

ðt0;y; tnÞ ¼
X

j

ajðt; sÞ ðsj;y; sjþnÞ;

with the ajðt; sÞ non-negative and summing to 1. To be sure, for n ¼ 1; this

observation can already be found in Cauchy’s work [Ca40]. Since

x/n ðt0;y; tnÞð� � xÞn�1
þ is the B-spline with knots t0;y; tn that integrates to 1,

we recognize, in hindsight, in (7) Boehm’s [B80] now standard formula for knot
insertion.
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2. Chakalov’s B-spline recurrence relation

In [C38a] (see [C36] for an earlier announcement of these results and [C38b] for an
extended summary in German), Liubomir Chakalov2 discusses divided differences in
full generality, that is, permitting any kind of coincidence among the points. He
writes the general divided difference in terms of a strictly increasing sequence
ða0;y; amÞ with a corresponding sequence n of natural numbers, the multiplicities,
and so considers

N½f � :¼
Xm

r¼0

X
0plonr

ArlD
lf ðarÞ; ð8Þ

with Dl indicating l-fold differentiation and with the Arl set so that, with ðÞ j

denoting the function x/x j;

N½ðÞ j� ¼ djn; j ¼ 0; 1;y; n :¼
X

r

nr

 !
� 1: ð9Þ

Hence, assuming there exist such Arl (their existence is proved below),

N½f � ¼ ðt0;y; tnÞf ¼: ðtÞf

with

t :¼ ðy; ar;y; ar|fflfflfflfflffl{zfflfflfflfflffl}
nr terms

;yÞ

the non-decreasing sequence that contains ar exactly nr times, all r:
Chakalov is interested in ‘minimal sets’. This notion, introduced by him in [C34],

concerns the possible values of x in the well-known formula

ðtÞf ¼ Dnf ðxÞ=n! ð10Þ

as f varies over a given class F : For this, he develops the integral representation

ðtÞf ¼
Z

uðxÞDnf ðxÞdx:

Of course, in modern notation,

uðxÞ ¼ MðxjtÞ=n! ¼ ðtÞð� � xÞn�1
þ =ðn � 1Þ! ¼: M0;nðxÞ=n!;

that is, u is the B-spline with knots t that integrates to 1=n!: Chakalov proves that u is
piecewise polynomial of degree n � 1 with breaks only at the tj; and is zero outside

the interval ðt0::tnÞ: He also proves that u is positive on that interval, and does this
by induction on n: For this, he proves (with the aid of the calculus of residues; see
below) that

Dðu=ðam � �Þn�1Þ ¼ u1=ðam � �Þn; ð11Þ

with u1 :¼ M0;n�1=ðn � 1Þ!:
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In more current terms and with the differentiation on the product carried out and
recalling that am ¼ tn; this reads

ðn � 1ÞM0;n þ ðtn � �ÞDM0;n ¼ nM0;n�1:

Using the fact (whether or not known to Chakalov) that

DM0;n ¼ n
M0;n�1 � M1;n�1

tn � t0
;

this implies that

ðn � 1ÞM0;n ¼ n M0;n�1 �
tn � �
tn � t0

ðM0;n�1 � M1;n�1Þ
� 	

¼ n
� � t0
tn � t0

M0;n�1 þ
tn � �
tn � t0

M1;n�1

� 	
;

the well-known B-spline recurrence relation (4) in slightly different garb.
Chakalov obtains his recurrence relation (11) in the following manner. It is well-

known that

ðtÞðz � �Þ�1 ¼ 1=PðzÞ :¼ 1
Y

j

,
ðz � tjÞ ¼:

Xm

r¼0

X
0plonr

l!Arl

ðz � arÞlþ1
;

with the double sum the partial fraction expansion of 1=P: On the other hand, the
double sum is also exactly what one obtains when applying (8) to the function
f ¼ 1=ðz � �Þ: Hence, the coefficients in (8) are uniquely determined by conditions
(9), that is, by the requirement that N be the divided difference on t; and can be
computed via the partial fraction expansion of 1=P: This is Chakalov’s Theorem 1.

Chakalov makes the point that, for any polynomial f ; its remainder on division by
P is the unique polynomial of degree pn that matches f at t: From this, he derives
the standard formula for the divided differences of an arbitrary power.

On page 361, he applies his explicit expression for ðtÞ to the function

x/

Z x

a0

1x � tUn�1jðtÞdt;

with j an arbitrary continuous function on the interval ½a0 :: am� and
1yUs :¼ ys=s!

a convenient abbreviation for the normalized power function that would have saved
him some writing. This gives him

uðxÞ ¼
Xm

r¼0

X
0plonr

Arl1ðar � xÞþU
n�l�1:

From this, he obtains the piecewise polynomial character of u and, because of his
explicit formula (8), perhaps even the smoothness across breaks (though, offhand, he
does not comment on that).
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His major contribution occurs on p. 363 where he states the formula

uðxÞ ¼ 1

2pi

Z
Cs

1z � xUn�1 dz

PðzÞ; ð12Þ

which holds for as�1oxoas in case Cs is any curve that excludes a1;y; as�1 and

includes as;y; am: (12) holds, as he points out, since
P

0plonr
Arl1ar � xUn�l�1 is

the residual at z ¼ ar of the function z/1z � xUn�1=PðzÞ: Eq. (12) was rediscovered
and put to good use much later by Meinardus; see [Me74].

From (12), Chakalov then derives his recurrence relation (11) by differentiation.
To be sure, the expression of a divided difference, at an arbitrary sequence of points
including possible coincidences, as a contour integral occurs already in [Fr71]
(though it takes hindsight to notice this since there is no mention of polynomial
interpolation, let alone divided differences), and before Hermite’s introduction, in
[He78], of what we now call Hermite interpolation and whose analysis there is firmly
based on the use of the calculus of residues. Further facts concerning the history of
this approach to divided differences can be found in [N24, p. 199f]. A fair exposition
and discussion, in English, of Chakalov’s results can be found in [BHS93, pp. 6–8,
18, 39–41, 43–44], and in [B96, pp. 22–26].

Finally, noteworthy from the spline point of view is the fact that, in the last part of
[C38a], Chakalov derives what we now would call the Peano kernel of the error in
quadrature, in particular Gauss quadrature, showing it to be what we now would
call a monospline, and showing its positivity.
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