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ONE-SIDED V -APPROXIMATION 

BY 

A. PINKUS AND V. TOT1K 

ABSTRACT. Let U„ be an jz-dimensional subspace of C[0, 1]. We prove 
that if n > 2, and U„ contains a function which is strictly positive on (0, 1), 
then there exists a n / E C[0, 1] which has more than one best one-sided 
L '-approximation from U„. We also characterize those U„ with the property 
that each/ E C[0, 1] has a unique best one-sided L'(vv)-approximation 
from Un with respect to every strictly positive continuous weight function w. 

1. Introduction. In this paper we consider the problem of uniqueness of best 
one-sided L '-approximations to continuous functions from a finite dimensional sub-
space. We prove two main results. To explain these results, some notation is needed. 

Un will denote a fixed «-dimensional subspace of C[0, 1]. An will be the set of 
f E C[0, 1] for which there exists a u E Un satisfying u(x) ^f(x) for all x E [0, 1]. 
Thus 

An = { / : / e C [ 0 , l ] , 3uE Uny u < / } 

If Un contains a strictly positive function then An = C[0, 1]. 
It is easily seen that for each /E An there exists a w* E Un, w* < / , for which 

(1.1) II/" M*||I = min{||/- 4 : « E !/„, u < / } 

where ||/||i = J0 |/(jc)|d;c. Such a w* we call a best one-sided V-approximation to f 
from U„. Since we consider u < / , the minimum problem in (1.1) is seen to be 
equivalent to 

(1.2) max j u(x)dx:u E Un, u < / [ . 

We say that Un is a unicity space for L1 if for every / G A„ there exists a unique best 
one-sided L1-approximation to/from Un. 

DeVore [1] proved that if Un, n > 2, is a Tchebycheff space then (/w is not a unicity 
space for L1. In Pinkus [3], this negative result was also shown to be valid if Un, 
n > 2, is a subspace of splines with fixed knots. (Neither of these two results rep
resented the main contents of these papers). Strauss [5] gave a series of necessary and 
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sufficient conditions for Un to be a unicity space for L1. One of these equivalent 
conditions is the following: 

THEOREM A (Strauss [5]). Un is a unicity space for V if and only if for each 

u E U„\{0} there exists a v E Unfor which 

(1) v(x) < |M(JC)|, all x, 

(2) J v(x)dx> 0. 

On the basis of the above theorem, Strauss was able to prove that if U„, n > 2, is 
a weak Tchebycheff space containing a strictly positive function, then Un is not a 
unicity space for L]. Our first result shows that Tchebycheff and weak Tchebycheff 
spaces are irrelevant in the above result. We prove 

THEOREM 1. If there exists a u E Un, n> 2, such that u(x) > Ofor all x E (0,1), 
then Un is not a unicity space for L1. 

Note that for n = 1 it easily follows from (1.2) (or from Theorem A) that U\ is a 
unicity space if and only if /J u(x)dx i= 0 for u E U]/{0}. 

As may be seen from Theorem A, the necessary and sufficient conditions given 
therein are generally very difficult to check for n > 2. 

Let W denote the set of all continuous strictly positive functions on [0,1]. For each 
w EW, set 

11/1= \]\f(x)\w(x)dx. 

Paraphrasing the previous definitions we say that w* is a best one-sided L\w) approx
imation to / E An from Un if u * E U„, u * < / , and 

(1.3) | | / - u*\\w = min{ | | / - u\\w:u E Un, u < / } . 

This problem is equivalent to 

(1.4) max \ u(x)w(x)dx:u E Un, u < ft. 

We say that Un is a unicity space for L\w) if for every / E An (An does not depend 
on w) there exists a unique best one-sided L\w) approximation to/from U„. In general 
a best one-sided L'(vv) approximation to/from Un is w dependent. 

It is easily seen that Theorems A and 1, and the examples previously mentioned, are 
valid in the case of best one-sided L1 ( w) approximation for any w EW, fixed. The only 
change is that in Theorem A we must replace (2) by 

(2') J v(x)w(x)dx> 0. 
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Thus the conditions as given in Theorem A are w dependent. This is also the case in 
the problem of uniqueness for the two-sided L'(vv) approximation problem (see e.g. 
Kroo [2], Pinkus [4]), while this is not the case for the corresponding one and two-sided 
approximation problem in the Lx(w) norm, H/HL'V) = max{|/(jc)|VV(JC) : 0 < x < 1}. 
(The Haar condition is w independent). Thus aside from the negative result of Theorem 
1, it is rather difficult to ascertain whether a given Un is a unicity space for L'(vv) for 
a given w E W. For one particular class of Un, however, this question is readily 
answered. For u E t/„, set supp(w) = {x: u(x) =£ 0}. If Un has a basis of functions 
U\,. . . , un for which supp(w() Pi sup ( My) = 0, all / =£ j , then Un is a unicity space for 
L'(vv) if and only if j0Ui(x)w(x)dx =£ 0, / = 1,. . . ,n. This readily follows from (1.4). 
Here our «-dimensional problem has reduced to n 1-dimensional problems. 

Since the conditions of Theorem A are difficult to check we might ask for conditions 
on Un implying that Un is a unicity space for L'(vv) for all w E W. Our second result 
deals with this problem. 

THEOREM 2. U„ is a unicity space for L\w) for every w E W if and only if Un has 
a basis of functions u\,. . . , unfor which 

(1) Uj(x) ^ 0, / = 1,. . . ,n, all x 
(2) supp («,) fl supp (Uj) = 0, all i =£ j . 

2. Proof of Theorem 1. Let ux E Un, n > 2, be such that Wj (x) > Ofor all JC E (0, 1). 
Assume without loss of generality that Jj ul(x)dx = 1. We may construct a basis for 
U„,{u\9u2,. . . , «„} such that J0 w;(x)dx = 0, / = 2, . . . ,n. Let V = span{w2, • • • , un}-

For each v E V\{0}, set 

J(v) = {x:v(x) < 0} 

and let |7( v)| denote the Lebesgue measure of J( v). Note that J( v) = J(cv) for all 
c > 0. Since V = {v : v E V, || v||oo = 1} is compact and equicontinuous, there exists 
a v* E V for which \J(v*)\ > |7(v)| for all v E V Ç Un. 

Let V+(JC) = max{v*(x),0}. Note that v+ ^ 0 since f0 v*(x)dx = 0. We claim that 
if u E £/„, u < v*, then J0 w(x) dx < 0. This will prove the theorem (from (1.2)) since 
v* E C[0, 1], 0, v* < v+, and 0, v* E V. 

Every w E U„ is of the form u = bux + v, where fr E /?, v E V. Furthermore, 
Jj w(x)d;c = b. Assume that there exists a u = bux + v, as above, with b > 0 and 
w < v*. For x E 7(v*), V*(JC) = 0 and V(JC) < —^MI(JC). Since M^JC) > 0 for all 
xE (0, 1), it follows that v ^ 0and7(v) D7(v*) . Because J0'v*(;c)djc = 0, there 
exists an x* E (0, 1) for which v*(;c*) = 0, and v* takes strictly positive values in 
every neighborhood of JC*. However V(JC*) ^ —Z?Wi(x*) < 0 and thus J(v) contains 
a neighborhood of JC*, implying that |7 ( v)| > | i (v* ) | . This contradiction proves the 
theorem. • 

REMARK. Both this proof and the theorem fail if we allow ux to vanish in (0, 1). It 
is readily checked that U2 = span {(JC — 1/2)2, (x — 1/2)+} is a unicity space. 
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REMARK. The proofs of the negative results considered in the introduction, due to 
DeVore, Pinkus, and Strauss, all used quadrature formulae. If there exist m distinct 
points {x;}-li in [0, 1], and strictly positive numbers {X/jJi, with 1 < m < n - 1, for 
which 

r\ m 

u(x)dx = 2 X,-«(*,•) 

for all w E £/„, then non-uniqueness may be proven as follows. Let w* E £/„\{0} be such 
that u*(Xi) — 0, / = 1 , . . . , m. Such aw* exists since m < n — 1. Furthermore from 
the quadrature formula 

u*(x)dx = 0. 
Jo 

As above, assume w < wî, w E U„. Then 

ri m m 

u(x)dx = 2J X/W(X/) < 2 X/M/t-̂ /) = 0. 

This implies the non-uniqueness. As was pointed out to us by G. Jameson, if we assume 
that there exists aw E Un for which u(x) > 0 for all x E [0, 1], then by convexity-type 
arguments there exists a quadrature formula of the above form with m points, 
1 < m < n — 1. We may therefore apply the above quadrature formula argument if Un, 
n > 2, contains a strictly positive function on [0, 1]. 

3. Proof of Theorem 2. Our proof of Theorem 2 very much depends upon the 
following proposition which was proved in Pinkus [4]. The proof given therein is a 
functional analytic proof. We here reprove the result by an "elementary" and more 
constructive method. 

PROPOSITION 3.1. Let Vm be an m-dimensional (m < o°) subspace ofC[0,1] with the 
property that there does not exist a v E Vm\{0} satisfying v(x) > Ofor all x E [0, 1]. 
Then there exists a w E W for which 

v(x)w(x)dx = 0 
Jo 

for all v E Vm. 

We prove the proposition via a series of lemmas. 

LEMMA 3.2. For Vm as above, there exist k points (k < °°)? {x,}/=1 such that if 

v E Vm and v(x,) > 0, / = 1,. . . , k, then v = 0. 

PROOF. Follows from a compactness argument. • 

Let Vm = span{ V!,. . . , v,„}, and set vt = ( V;-(JCI), . . . , V,-(JC*)) E Rk, i = 1 , . . . , m. 
(•, •) will denote the usual vector inner product. 
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LEMMA 3.3. Let Vm be as in the statement of the proposition, and letJC{l,...,m}. 
Then there exists a wJ E Rk, (wJ)j > 0, j = 1, . . . ,k, such that (v,, wJ) > 0 for 
i E J, and(viyw

J) < Oyfor i G J. 

PROOF. Let V denote the m x k matrix V = ( v^x,))^, J=i. From Lemma 3.2 there 
does not exist a vector a G /?'"\{0} for which aV > 0. This also implies that 
rank V = m ^ fc. 

Let e' denote the /th unit vector in Rk. Set A = {aV:a G /?'"} and B = 
{^Ukie'-.h > 0, 2-=1 \f- = 1}. The sets A and 5 are closed convex subsets of R . 
Furthermore, by assumption, A H B = 0. Thus there exists a strictly separating 
hyperplane, i.e., a c G Rk, c0 E /? for which 

(3.1) (aV,c)<c0, all a E/?"7 

(3.2) ( J C , C ) > C 0 , all J C G 5 . 

From (3.1) it follows that Vc = 0, and c0 > 0. Thus from (3.2) we also obtain (c)7 > 
0J= 1 , . . . , * . 

For given 7 Ç {1,. . . , m} there exists, since rank V = m < /:, a vector bJ E: Rk for 
which (F/,fty) > 0 for / G 7 and (v/,67) < 0 for / G 7. Set H>y = c + efcJ, where 
€ > 0 is sufficiently small so that (c + eft7), > 0, j : = 1 , . . . ,k. This proves the 
lemma. D 

LEMMA 3.4. L^̂  Vm be as in the statement of the proposition. Let 7 C { l , . . . , m } . 
Then there exists a wJ E W for which 

n r > 0 , / E y 
v/(jc)w/(jc)djt = i 

jo l < 0 , / E i 

PROOF. Simply smooth the atomic measures corresponding to the vectors wJ of 
Lemma 3.3. • 

PROOF OF PROPOSITION 3.1. For each J Ç {1,. . . ,m} let wJ E W be as given in 
Lemma 3.4. Set c] = Jy1 V/(x)w7(x)dx, / = 1,. . . , m, and cy = (c{,. . . ,c \J . Let C 
denote the convex hull of the {cJ : J Ç { 1 , . . . , m}}. Each quadrant of Rm contains a 
vector of C in its interior. Therefore 0 E C. Thus there exists a convex combination 
w of the vvy for which J0 V/(JC)W(JC) dx — 0, / = 1,. . . , m. By construction w GW. • 

REMARK. This proof actually shows that given any dense linear subset of C[0, 1] 
there exists a w E W, which is also in this dense linear subset, and which satisfies the 
conditions of the proposition. Thus, for example, w may be taken to be a polynomial. 

The following proposition is used in the proof of Theorem 2. 

PROPOSITION 3.5. Assume that Un is a unicity space for Lx (w) for every w E W. Given 
any n — 1 distinct points {jc,-}"r, , there exists a non-negative u E Un\{0} for which 
u(xi) = 0, / = 1,. . . , n — 1. 
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PROOF. The proof is by induction on the number of points. We prove that given any 
k distinct points {JC/}/=1 , 0 < k < n — 1, there exists a non-negative u E Un\{0} for 
which u(xi) = 0, / = 1 , . . . ,&. This statement for k = 0 simply says that £/„ contains 
a non-negative, non-trivial function. If this is not the case, then by Proposition 3.1 there 
exists a w E W for which Ĵ 1 M(*)w(jc)djt = 0 for all u E £/„. From the form (1.4), 
this immediately implies that Un is not a unicity space, contradicting our hypothesis. 
Thus U„ contains a non-negative non-trivial function. 

We now use induction. Assume the result is valid for fc — 1, 0 < fc < n — 1. Let 
{xi}i=] by any k distinct points and assume that there does not exist a non-negative 
u E U„\{0} for which «(*,) = 0, / = 1, . . . ,&. By the induction hypothesis there exist 
non-negative ui9. . . ,ukE U„\{0} which satisfy UXXJ) = 0, / i= j ; i,j — 1,. . . ,k. By 
assumption w,-(;c/) i= 0. Thus we can assume that ut{Xj) = ô/7, i,j = 1,. . . ,k. 

Set 

M = {u:u E. U„, u(Xj) = 0, / = 1, . . . , k}. 

M is a subspace of U„, and since k < n — 1, dim M > n — k > 0. Furthermore the 
« j , . . . , uk are linearly independent and not in M. Thus dim M = n — k. By assumption 
M does not contain a non-negative non-trivial function. From Proposition 3.1 there 
exists a w E W for which /J M(jt)w(jc)djc = 0 for all u E M. Let «* E M\{0}, and 
setwî(jt) = max{w*(jt),0}. Thenwî EC[0 , l]andwî ^ 0. We claim that if u E U„ 
satisfies u < wî, then J0 w(x)w(x)dx < 0. If this is true, then 0 and w* are two 
one-sided bestL^w) approximations to u+, contradicting the unicity assumption of the 
proposition. 

Let u E Un, u < wî. Then « = w + S/=i w(x/)w;, where û G M. Since wî(jt,-) = 0, 
it follows that M(*/) < 0, / = 1,. . . , k. Thus 

u(x)w(x)dx = 2J u(Xi) Uj(x)w(x)dx ^ 0. D 

PROOF OF THEOREM 2. If Un has a basis of functions which satisfy conditions (1) and 
(2), then it easily follows that U„ is a unicity space for L\w) for every w G W. We 
therefore assume that Un is a unicity space for L\w) for every w E W and construct 
a basis of functions which satisfy (1) and (2). 

Let y\,. . . , yn be any w distinct points for which u(yt) — 0, / = 1,. . . ,n, u E Un, 
implies u = 0. By Proposition 3.5 there exist non-negative ux,. . . ,un E £/„\{0} 
satisfying w,( j7) = 0, / =£7; 1,7 = 1,. . . , n. If ^(y,) = 0, then u, = 0. We may therefore 
assume that w,(yy) — bij9 ij — 1 , . . . , ft. The {«,-}"= j form a basis of functions for £/„ 
which satisfy (1). We claim that they also satisfy (2). 

Assume that there exists a y E [0, 1] and j,k E {1,. . . , n), j 4 k, such that 
W/(j), w*()0 > 0. Obviously y GL {yu . . . ,yn). From Proposition 3.5 there exists a 
non-negative w* E L̂ XjO} for which u*(y) = 0 and w*(y,) = 0, / = 1,. . . ,n; 
i 4 jyk. Now w* = 2"=1 u*(yi)Ui. Since «*(}>;) = 0, / = l , . . . , w ; / =£ 7,/:, 
we have w* — u*(yj)Uj + u*(yk)uk. However w* > 0, Uj(y), uk(y) > 0, and 
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0 = u*(y) = u*(yj)Uj(y) + u*(yk)uk(y). Thus u*(yj) = u*(yk) = 0. Therefore 
u*(yi) = 0, / = 1,. . . ,n which implies that w* = 0. This contradiction proves the 
theorem. • 

REMARK. Theorem 2 is also valid if Un is an «-dimensional subspace of C(B), where 
B is any compact Hausdorff space. 
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