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Abstract. This paper concerns itself with the recovery of the coefficients, shifts and,
where applicable, dilates of a given form

f(x) =

m∑

j=1

cj G(x − tj) , or f(x) =

m∑

j=1

cj g(aj · x − bj) , x ∈ IR
n
,

where f , G and g are known. That is, we provide a method that identifies the quantities
cj , tj , aj and bj . In some cases we can even find G given only f and knowing that f is
of the above form.

§1. Introduction

The theme of this paper is the recovery of linear combinations of shifts and dilates of
a prescribed function that generate a given function f . Sometimes we are also able to
identify the function which is dilated and shifted. In the first case we assume that we are
given a function G : IRn → IR and a function f : IRn → IR. The latter we know to be of
the form

(1) f(x) =
m∑

j=1

cj G(x − tj), x ∈ IRn ,

for some unknown coefficient values {cj}m
j=1 ⊂ IR and shifts {tj}m

j=1 ⊂ IRn. It is assumed
that we do not know m but we know that m ≤ M for some given M ∈ IN . Our problem
is to identify or recover the coefficients and the shifts. We are able to determine these
quantities for functions G which admit Fourier transforms. We are also able to recover G
from f in some cases when G is essentially radially symmetric.

In the second problem we recover the {aj}m
j=1 ⊂ IRn, {cj}m

j=1 ⊂ IR and {bj}m
j=1 ⊂ IR,

and know f to be of the form

(2) f(x) =

m∑

j=1

cj g(aj · x − bj) , x ∈ IRn .

Here “·” denotes the standard inner product and g : IR → IR again satisfies some additional
constraints.



2 Martin Buhmann and Allan Pinkus

We may also consider this problem from another perspective. We know f and G, and
wish to determine whether f and G are related as in (1). That is, we would like a method
for deciding if f is a linear combination of M shifts and dilates of G. What we propose is
to apply the method which we detail in this paper, and then check whether the resulting
function agrees with f .

There are many applications of functions of the form (1) or (2) as approximation tools.
One occurs when radial basis functions are used for the approximation of multivariate
functions. In those approximation schemes, G is a rotationally invariant function and has
therefore the specific form G = φ(‖ · ‖), where ‖ · ‖ denotes the Euclidean norm. The
function φ is called a radial basis function, and it is chosen in advance. Calling φ a radial
basis function is a slight abuse of notation, because in fact φ is the radial part of the basis
function G(· − tj) centered at tj , but we bow to convention in this matter.

Useful choices for φ are φ(r) = r, φ(r) =
√

r2 + c2, c a positive parameter, or
φ(r) = exp(−c2r2), c again a parameter. Much work has been devoted to studying these
approximation tools, because they were found experimentally to yield highly promising
approximation results. As it turns out, radial symmetry is not always required to obtain
good approximation results, and therefore some of the most recent analysis no longer re-
quires radial symmetry, but studies the approximational efficacy of approximations of the
form (1) where G is a general, n-variate function with global support as the radial basis
functions above have. A recent review of these methods and their properties can be found
in [3]. Another application, especially of (2), may be met in the theory of artificial neural
networks. In that case g is often a “sigmoidal function” [2], and one views (2) as a single
hidden layer feedforward network, the aj , cj and bj being various network parameters.

Our approach to (1) is simple conceptually but perhaps computationally expensive.
We require G to be absolutely integrable, but often in fact absolutely integrable, because
we must evaluate its Fourier transform or even derivatives thereof at points. We consider
the Fourier transform of f in (1). It is the product of Ĝ times an exponential sum, i.e.,

f̂(ω) =
m∑

j=1

cj e−itj ·ω Ĝ(ω), ω ∈ IRn .

In the simple set-up, where G is assumed to be prescribed, Ĝ is known and we may therefore
restrict ourselves to considering an exponential sum of the form

(3) h(ω) =

m∑

j=1

cj e−itj ·ω , ω ∈ IRn ,

(at least on the interior of the set where Ĝ does not vanish) whose unknown parameters
are {cj}m

j=1 and {tj}m
j=1.

Our next section is devoted to studying just this problem whose univariate form
is similar to a problem discussed by Draux [4, p. 585–595]. We call our problem an
Hermite interpolation problem using exponential sums, and that is the subject of Section
2. In Section 3 we give answers to our principal questions outlined at the onset of this
introduction, namely the recovery of (1) in Theorem 3 and of G if it is (asymptotically for
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large argument) radial (Theorem 4). In Section 4 the recovery of shifts and dilates in (2)
is considered. Its main result is Theorem 6.

It should be immediately noted that without some a priori conditions on G (or g)
neither problem (1) nor (2) is tractable. For example, in problem (1) if n = 1 and G(x) =
ex, then the knowledge that f is of the form

f(x) =
m∑

j=1

cj G(x − tj) =
( m∑

j=1

cj e−tj

)
ex

cannot in any way determine the {cj}m
j=1 and {tj}m

j=1. A similar example can be con-
structed for problem (2).

§2. Hermite Interpolation by Exponential and other Sums

Our aim in this section is to develop a method of identifying the cj and tj in (1) if we know
f and G. To this end, suppose that G (and therefore f because m is finite) is integrable,

and that we can determine f̂ and Ĝ. Since

f̂(ω) =
( m∑

j=1

cj e−i tj ·ω
)

Ĝ(ω) , ω ∈ IRn,

it follows that f̂/Ĝ (on the set where Ĝ 6= 0) is an exponential sum of the form

f̂(ω)

Ĝ(ω)
= h(ω) =

m∑

j=1

cj e−i tj ·ω , ω ∈ IRn .

As such it is as differentiable as is necessary in a neighbourhood of a point ω0 ∈ IRn. Since
we can shift Ĝ by ω0, and absorb an exponential factor coming through the shift into G,
there is no loss in generality if we assume ω0 = 0. We assert that the cj and tj can be
uniquely determined from the derivatives of h, up to some fixed order, at the origin. That
is, we will prove that given at least an upper bound M on m, there is essentially a unique
exponential sum of the form (3) which satisfies

(4)
∂|α|

∂ωα

(
h(ω) − f̂(ω)

Ĝ(ω)

)
ω=0

= 0, |α| ≤ 2M − 1,

where α = (α1, . . . , αn) ∈ ZZn
+, |α| = α1 + · · ·+ αn, and

∂|α|

∂ωα
=

∂|α|

∂ωα1

1 · · ·∂ωαn
n

.

We will later in this paper show how this approach allows us to deal with sums of the
form

(5) f(x) =

m∑

j=1

cj g(aj · x), x ∈ IRn ,
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where the g which replaces the exponential is known in advance and, like the exponential,
satisfies g(`)(0) 6= 0 for all ` = 0, 1, . . . , 2m − 1. We shall present a method to construct
the aj and cj in a unique way to give (5).

Before dealing with the general multivariate problem we give a result for the univariate
(n = 1) case. For this purpose, let EM be the set of exponential polynomials of degree at
most M . That is,

EM =
{

p : p(x) =
m∑

k=1

qk(x) ebk x, bk ∈ |C, qk ∈ PM−1,
m∑

k=1

(1 + deg qk) ≤ M
}

,

where PM−1 is the space of polynomials with complex coefficients of degree at most M −
1. In other words, EM is the set of all solutions of linear constant coefficient ordinary
differential equations of order at most M ([1, p. 169]).

Assume now that we are given values {dj}2M−1
j=0 and we wish to construct a p ∈ EM

satisfying

(6) p(j)(0) = dj , j = 0, 1, . . . , 2M − 1 .

This cannot be done for every arbitrary choice of {dj}2M−1
j=0 . As an example, take M = 1.

Thus
E1 = {a ebx | a, b ∈ |C} .

Here d0 = 0 and d1 6= 0 lead to a contradiction. There does not exist a p ∈ E1 satisfying
p(0) = 0, p′(0) 6= 0.

The general condition for existence and uniqueness of a solution is the following. Let
D be the M × (M + 1) Hankel matrix

D = (di+j)
M−1
i=0

M
j=0 .

We assume that if rank D = m, then the submatrix

(7) D̃ = (di+j)
m−1
i,j=0

is non-singular. We call this condition the “D rank condition”. We can now state and
prove (in a constructive way) the following theorem.

Theorem 1. Suppose that the {dj}2M−1
j=0 satisfy the D rank condition. Then there is a

unique p ∈ EM such that (6) holds. Furthermore, if m = rank D, then p ∈ Em ⊆ EM .

Proof: Let m = rank D and

Bx =




d0 d1 · · · dm−1 dm

d1 d2 · · · dm dm+1

...
...

...
...

dm−1 dm · · · d2m−2 d2m−1

1 x · · · xm−1 xm




.
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As a function of x, det Bx is a polynomial of degree at most m. It follows from the
rank D condition that deg det Bx = m. Let b1, b2, . . . , br be its zeros with multiplicities
µ1, µ2, . . . , µr, respectively. Therefore we have

∑r
j=1 µj = m. Set

p(x) =
r∑

k=1

qk(x) ebk x ,

where the qk ∈ Pµk−1 are chosen so that (6) holds for j restricted to 0, 1, . . . , m − 1. This
linear problem always has a unique solution.

We claim that the remaining conditions of (6) hold as well. We will prove this only
in the case when all of det Bx’s zeros are simple and distinct. The idea of the proof is the
same in the general case.

Let
Dj = (dj , dj+1, dj+2, . . . , dj+m), j = 0, 1, . . . , 2M − 1 − m .

These 2M −m vectors span a vector space, call it V , in IRm+1. By the rank D condition,
the D0, D1, . . . , Dm−1 are linearly independent, and the Dm,Dm+1, . . . , DM must each be
a linear combination of the D0, D1, . . . , Dm−1. It follows from an induction argument,
considering the first m columns and the last column (which contains Dj , j ≥ M + 1) of
the matrix D, and using the rows j − M + 1, . . . , j − M + 1 + m, that Dj , j ≥ M + 1, is
also a linear combination of the D0, D1, . . . , Dm−1. In particular, dim V = m. Since

det Bbk
= 0, k = 1, 2, . . . , m ,

it is true that the vectors

B̂k = (1, bk, b
2
k, . . . , bm

k ) ∈ V, k = 1, . . . , m .

By a Vandermonde determinant argument, the vectors {B̂k}m
k=1 are linearly independent

and therefore also span V . Furthermore the vectors obtained by considering their first m
components are also linearly independent.

Recall that µ1 = µ2 = · · · = µr = 1. For any p of the form

(8) p(x) =
m∑

k=1

qk ebk x

we have

p(j)(0) =

m∑

k=1

qk bj
k , j = 0, 1, . . . , 2M − 1 .

The qk were chosen so that (6) holds for j = 0, 1, . . . , m − 1. We use an induction
argument to show that this remains true for all applicable j. Suppose we have (6) for
j = 0, 1, . . . ` + m − 1, ` ≥ 0. Recall that D` ∈ span {B̂1, . . . , B̂m}. For the first m
components, it is true that

D` =
m∑

k=1

qk(bk)` B̂k .
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Equality must then also hold for the last coordinate. As such we obtain

d`+m =

m∑

k=1

qk(bk)`+m = p(`+m)(0) .

This advances the induction and proves the existence. The uniqueness follows from
the easily proven fact that if p and q from EM satisfy

(p − q)(j)(0) = 0, j = 0, 1, . . . , 2M − 1 ,

then p − q = 0.

Remark: Theorem 1 proves the sufficiency of the rank D condition for interpolation from
EM . In fact this same condition is also necessary. We do not prove this here as we shall
not use it.

Corollary 2. Let p be of the form

p(x) =

m∑

k=1

ak ebk x

with distinct bk’s and nonzero ak’s. Then the matrix in (7) is nonsingular, and the bk’s
are the distinct zeros of det Bx, for k = 1, 2, . . . , m.

Proof: Based on Theorem 1, we need only show that det D̃ 6= 0. We claim that

det D̃ =
m∏

k=1

ak

∏

1≤i<j≤m

(bj − bi)
2 .

This then implies that det D̃ 6= 0 by virtue of the conditions in the statement of the
corollary. The desired result follows from the Vandermonde formula and from the easily
verified identity

D̃ = A · B

where A = (aj bi−1
j ) m

i,j=1 and B = (bj−1
i ) m

i,j=1.

§3. A Recovery Problem with Shifts

We are now in a position to prove our first result which applies to the general multivariate
case in (1).
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Theorem 3. Assume f and G are given, G ∈ L1(IRn), and f is of the form (1) for some
m ≤ M . Further assume that Ĝ is nonzero in a neighbourhood of a point ω0 ∈ IRn. Then
we can uniquely determine the cj and tj .

Proof: We may assume without loss of generality that ω0 = 0, for otherwise we can
replace G(x) by e−iω0·x G(x) and thus Ĝ by Ĝ(· − ω0). We know that

(9)
f̂(ω)

Ĝ(ω)
= h(ω) =

m∑

j=1

cj e−itj ·ω, ω ∈ IRn ,

and that this is well-defined and sufficiently differentiable, at least in a neighbourhood of
the origin (we shall require no more). The cj and tj are to be identified. We assume in the
above representation that the cj are nonzero, and the tj are pairwise distinct. Otherwise
we would rewrite the sum with a reduced m. For the moment we also assume that the cj

are distinct.
Given a non-zero vector γ = (γ1, . . . , γn) we consider the directional derivative

Dγ = γ1
∂

∂ω1
+ · · ·+ γn

∂

∂ωn

.

For each non-negative integer k

(10) Dk
γ
h(0) =

m∑

j=1

cj(−i γ · tj)
k .

Assume that we have determined m. If the {(γ · tj)}m
j=1 are all distinct, then we may

apply Theorem 1 to obtain their values (and those of the {cj}m
j=1). From Theorem 1 and

Corollary 2, it follows that the {(γ ·tj)}m
j=1 are distinct if and only if the associated Hankel

matrix (7) has full rank m. That is, given γ we have a reasonable method of checking
whether we can obtain the values {(γ · tj)}m

j=1. If we can find, for n linearly independent
vectors {γr̂}n

r̂=1, the values
{(γr̂ · tj)}n

r̂=1
m
j=1,

then we can uniquely determine the {tj}m
j=1.

Let {γr}s
r=1, where s =

(
m
2

)
(n−1)+n, be vectors in IRn in generic position, i.e., every

n of them are linearly independent. We claim that given any m distinct vectors {tj}m
j=1

there exist n of the γr̂, say r1, . . . , rn, for which the

{(γr`
· tj)}m

j=1

are distinct for each ` = 1, . . . , n. This may be proven as follows. For each pair (i, j),
1 ≤ i < j ≤ m, we have (γr · ti) = (γr · tj) for at most n − 1 of the vectors {γr}s

r=1,
because ti − tj 6= 0. Since there are

(
m
2

)
such pairs (i, j), the desired result follows.

It thus remains to find m. Since m ≤ M for some given M , we can take

s =

(
M

2

)
(n − 1) + n
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in the above. The maximum rank of the associated Hankel matrices will be m.

At the end of the first paragraph of this proof we assumed that the cj are distinct.
Why is this assumption necessary, and how can we overcome it? It is necessary for the
following reason. Assuming that the {(γr · tj)}m

j=1 are distinct, the method of Theorem 1
gives us the {(γr · tj)}m

j=1 and the {cj}m
j=1. If, for example, c1 = c2 = c, then we know

that all of the values (γr · tj), r, j = 1, 2 go with the value c. However we have no way of
knowing how to pair the value (γ1 · t1) with (γ2 · t1), and the value (γ1 · t2) with (γ2 · t2).
(This is of course necessary for recovering the tj .) We could just as easily have paired
(γ1 ·t1) with (γ2 ·t2), and (γ1 ·t2) with (γ2 ·t1). This problem does not arise if the {cj}m

j=1

are distinct.

One way to overcome this problem is to calculate the {cj}m
j=1. (Assuming that we

have determined m, this can always be done.) If some cj are equal, go back to h and shift
it by ω̃. Since

h(ω − ω̃) =
m∑

j=1

(
cje

itj ·ω̃
)

e−itj ·ω, ω ∈ IRn ,

we have a new problem totally equivalent to our old problem, but with altered cj . In
general, this will provide us with distinct coefficients. Since we can readily test whether
the resulting new coefficients are distinct, we regard this problem as overcome. (Another
method of dealing with this problem is to check all possible combinations – these are finite
in number assuming the (γr · tj)

m
j=1 are distinct for each r = 1, . . . , n – and then see which

of the resulting functions agrees with h.)

Remark: Assume that we know m, and that the {cj}m
j=1 are distinct. If, for each i =

1, . . . , n, the ith components tji of the tj are distinct, then we do not need all the mixed
derivatives as in (10). In this case it suffices to consider only the pure partial derivatives
∂k

∂xk
i

. Even in the case where not all the {tji}m
j=1 are distinct, we still obtain their values.

However in this case we have trouble identifying how often a particular tji has occurred, and
what are the values of the associated cj . (When this happens we will obtain appropriate
sums of the cj , rather than the cj themselves.) If the cj and every possible partial sum of
the cj are all distinct, then it is possible to easily unravel the resulting data. In general
the situation is rather more complicated. One can try all possible (finite) assignations of
the {tji}m

j=1
n
i=1, solve for the {cj}n

j=1 (if possible; whenever that is not possible, the chosen
assignment cannot be correct), and then check whether the resulting function agrees with
h. This does not seem to be an efficient method (see also the assumptions at the beginning
of this remark), but does have the distinct advantage of only needing knowledge of the
pure partial derivatives.

We now again consider (1). Moreover we now seek to identify not only the cj and tj,
but also G. This we do by finding the asymptotics of the Fourier transform of G at zero,
thus giving us the required derivatives at zero.

Theorem 4. Let f and G satisfy the conditions of the previous theorem. Suppose that
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∑m
j=1 cj = 1 and f can be written as

(11) f(x) =

k∑

j=1

aj ‖x‖−βj gj(x) + h(x) .

This is to be valid for real coefficients aj , β1 < β2 < · · · < βk, and gj is, for each j,
either eiγj ·x (any γj ∈ IRn) or log ‖x‖. Further assume that βk ≥ 2m + n − 1 and that
h : IRn → IR satisfies |h(x)| = O

(
(1 + ‖x‖)−n−2m

)
and the moment conditions

∫

IRn

h(x)xα dx = 0, |α| ≤ 2m − 1.

Then, not only cj and tj, but also G can be identified from f in (1).

Proof: It is a consequence of the proof of Theorem 3 that cj and tj can be found from
just knowing the values of the left-hand side of (10). Here again, we take ω0 = 0. Once
we know the values of the cj and tj , then from (9) we may obtain Ĝ, and thus G.

Next we are using the fact that f and G have the same asymptotics at ∞ because
m < ∞ and

∑m
j=1 cj = 1. This implies that when f has the form (11), G must have

that form too, perhaps with a different h, call it H, that still satisfies the same moment
conditions. Concretely, if f has the form (11), G(x − tj) must be of the form

k∑

`=1

a` ‖x − tj‖−β` g`(x − tj) + H(x − tj),

where H satisfies the same decay properties as h does. Therefore the expression

m∑

j=1

cj

k∑

`=1

a` ‖x − tj‖−β` g`(x − tj) + H(x − tj) −
k∑

j=1

aj ‖x‖−βj gj(x) = h(x)

must vanish when integrated against xα for the appropriate range of α. By a change of
variables, however, that integral can be transformed to

∫

IRn

( m∑

j=1

cj(x + tj)
α

)( k∑

`=1

a` ‖x‖−β` g`(x) + H(x)
)
− xα

k∑

j=1

aj ‖x‖−βj gj(x) dx = 0.

Now, the linear independence of monomials of different degrees and the fact that the cj

sum to one imply the assertion that H satisfies the moment conditions.
According to [5, p. 530], this now implies that Ĝ has the following asymptotic expan-

sion at zero. The expansion is

k∑

j=1

g̃j(ω) ‖ω‖βj−n + O(‖ω‖2m), ‖ω‖ → 0 ,
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where g̃j(ω) ‖ω‖βj−n is the generalized Fourier transform of aj ‖x‖−βj gj(x), the O term

coming from the moment conditions on h which imply that |ĥ(ω)| = O(‖ω‖2m) for small
argument. The g̃j are known, bounded, smooth functions that can be found in [5, p. 530f.].

As βk − n ≥ 2m− 1, the above asymptotic expansion suffices to find all the necessary
derivatives at 0. Hence, cj and tj can be determined.

We remark that the condition
∑m

j=1 cj = 1 is only a restriction in so far as it requires
that the sum of the cj be nonzero. If it has a nonzero value other than one, it can be
absorbed into the G.

We further remark that the radial asymptotic behaviour is salient because it enables us
to relate the form of G to an asymptotic expansion of Ĝ at zero. This approach resembles
the univariate Abelian and Tauberian theorems, e.g. in Widder [7, Chap. V].

§4. Recovery with Dilation and Shifts

In this section we address ourselves to resolving recovery problems where f is of the form
(2). That is,

f(x) =

m∑

j=1

cjg(aj · x − bj) , x ∈ IRn,

for some given g and unknown {aj}m
j=1 ⊂ IRn, {cj}m

j=1 ⊂ IR and {bj}m
j=1 ⊂ IR.

Note that if we know that the bj are all zero, then the analysis of Theorem 3 suffices.

Proposition 5. Let g be C2m−1 in a neighbourhood of the origin, and g(k)(0) 6= 0,
k = 0, 1, . . . , 2m − 1. Assume that f and g are given and satisfy

f(x) =
m∑

j=1

cjg(aj · x)

for some unknown non-zero cj , distinct aj , and m ≤ M . Then we can uniquely determine
the cj and the aj .

Proof: For each given γ ∈ IRn, and integer k, 1 ≤ k ≤ 2m − 1,

Dk
γ
f(0) =

m∑

j=1

cj(aj · γ)kg(k)(0) .

Since we know Dk
γ
f(0) and g(k)(0)(6= 0) for all applicable k, we have the values of

m∑

j=1

cj(aj · γ)k , k = 0, 1, . . . , 2m − 1 ,

for any γ ∈ IRn. We can now apply the analysis of Theorem 3.
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Remark: Assume we apply the method of finding the tj as described in the Remark
following Theorem 3 (with the appropriate restrictions and assumptions). That is, we only
use the pure partial derivatives and make no use of the mixed or directional derivatives.
Then using the method of proof of Proposition 5, we can find the tji and cj in the more
general

f(x) =

m∑

j=1

cjG(tj1x1, tj2x2, . . . , tjnxn)

whenever G ∈ C2m−1(IRn) and ∂k

∂xk
i

G(0) 6= 0, i = 1, . . . , n, k = 0, 1, . . . , 2m − 1.

The addition of the translates bj significantly complicates matters. In what follows
we will, for ease of exposition, assume that m is, a priori, known.

Theorem 6. Let g ∈ C2m−1(IR) and g(k) ∈ L1(IR), k = 0, 1, . . . , 2m− 1. Further assume

that ĝ(k)(0) 6= 0, k = 0, 1, . . . , 2m − 1. We are given f and g and know that they satisfy

f(x) =
m∑

j=1

cjg(aj · x − bj) , x ∈ IRn .

We assume that the {cj}m
j=1 are unknown and non-zero, the {bj}m

j=1 are unknown, and the
{aj}m

j=1 in IRn are, for n ≥ 2, unknown pairwise linearly independent. If n = 1 we only
demand that the aj = aj be distinct and non-zero. Then we can uniquely determine the
unknown parameters.

Proof: Assume for the moment that n ≥ 2. For any α, γ ∈ IRn\{0}, and 0 ≤ k ≤ 2m−1,

(12) (D2m−1−k
α

Dk
γ
f)(0) =

m∑

j=1

cj(aj · α)2m−1−k(aj · γ)kg(2m−1)(−bj).

On the assumption that aj · α 6= 0, j = 1, . . . , m,

(D2m−1−k
α

Dk
γ
f)(0) =

m∑

j=1

[
cj(aj · α)2m−1g(2m−1)(−bj)

] [
(aj · γ)

(aj · α)

]k

.

Thus, if aj · α 6= 0 and g(2m−1)(−bj) 6= 0, then we can determine, by the method of proof
of Theorem 3, the vectors

aj

(aj · α)
.

Here we use the fact that for n ≥ 2 the aj are pairwise linearly independent. As such the
above ratios are always distinct vectors. This determines the aj, up to multiplication by
a non-zero constant, for those j such that g(2m−1)(−bj) 6= 0. However it is possible that
g(2m−1)(−bj) = 0 for some j. The function g and thus g(2m−1) are known. Furthermore
we can also shift 0 to any y by substituting x + y for x. Using these facts we will assume
that in this way we have determined

aj = d̃j ãj , j = 1, . . . , m ,
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for some fixed ãj ∈ IRn\{0} and unknown d̃j ∈ IR\{0}, and all j = 1, . . . , m. (If g is of
finite support, this may prove to be impractical for some values of bj .)

Choose z ∈ IRn such that aj · z 6= 0, j = 1, . . . , m. Thus

h(t) = f(t z) =

m∑

j=1

cjg(djt − bj)

where the dj = d̃j(ãj · z) is unknown, but non-zero. If n = 1, then all the above is not
needed, and we start the analysis from here. For 0 ≤ k ≤ 2m − 1,

ĥ(k)(ω) =

m∑

j=1

cj

dk
j

|dj |
e

−ibjω

dj ĝ(k)(
ω

dj

) .

Thus

ĥ(k)(0) =
m∑

j=1

cj

dk
j

|dj|
ĝ(k)(0) .

The ĥ(k)(0) and ĝ(k)(0) are known, and ĝ(k)(0) 6= 0. The cj are non-zero and m is known.
If the dj are distinct we can directly apply the result of Theorem 1 to obtain the cj/|dj| and
dj (and thus the cj). If the dj are not distinct, and this can be discerned from the method
of determining the dj , (i.e., the associated matrix will have rank < m), then we should
alter the z. As such we now assume that we have determined the cj and aj, j = 1, . . . , m.

It remains to determine the bj , j = 1, . . . , m. Let z be as above. Thus

h(t) =
m∑

j=1

cjg(djt − bj)

with known cj and dj . We assume, as above, that the dj are distinct and non-zero. Now

ĥ(k)(ω) =

m∑

j=1

cj

dk
j

|dj |
e

−ibjω

dj ĝ(k)(
ω

dj

) ,

and thus
∂

∂ω
ĥ(k)(0) =

m∑

j=1

cj

dk−1
j

|dj|
(−ibj)ĝ(k)(0) +

m∑

j=1

cj

dk−1
j

|dj|
∂

∂ω
ĝ(k)(0) .

Since ∂
∂ω

ĥ(k)(0), ĝ(k)(0), ∂
∂ω

ĝ(k)(0), cj and dj are all known, and ĝ(k)(0) 6= 0, k =
0, 1, . . . , m − 1, we therefore have the values of

cjd
k−1
j

|dj|
bj , k = 0, 1, . . . , m − 1 .

Since the cj are non-zero and the dj are distinct and non-zero, the bj can be uniquely
determined from the associated square non-singular linear system.
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