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Abstract In this paper, we study an interesting property of L1-approximation. For
many subspaces M , there exist α∗(M) > 0 with the following property: if f vanishes
off a set of measure at most α∗(M), then the zero function is a best L1-approximant
to f from M . We explain this phenomenon, provide estimates for α∗(M) in many
cases, and present some open questions.
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1 Introduction

For many subspaces M , there exist α∗(M) > 0 with the following property: if f

vanishes off a set of measure at most α∗(M), then the zero function is a best
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L1-approximant to f from M . This relationship, between functions with small sup-
port and those whose best L1-approximant from a given subspace is always the zero
function, was first noted in the study of sparse representations (compressed sensing)
in the �m

1 setting. It is a relationship that is very L1-norm dependent.
In Sect. 2, we explain the fundamentals of this relationship, starting with the char-

acterization of best approximation from a linear subspace in the L1-norm. We are
then led to the definition of α∗(M), and discuss various basic properties thereof. In
Sect. 3, we consider theoretical upper and lower bounds on α∗(M). Section 4 contains
18 specific examples of subspaces (or subsets), with lower bounds and sometimes up-
per bounds on the associated α∗(M). Finally, in Sect. 5, we examine three families
of examples. The common feature of these examples is that M will have the property
that all m ∈ M with a fixed L1-norm have the same distribution. This implies that we
can explicitly calculate or characterize α∗(M).

2 L1-Approximation and α∗(M)

We start with some general results concerning L1-approximation.
Let B be a set, Σ a σ -field of subsets of B , and ν a positive measure defined on Σ .

Let L1(B, ν) denote the usual space of real-valued functions with norm

‖f ‖1 :=
∫

B

∣∣f (x)
∣∣dν(x).

For f ∈ L1(B, ν), we define its zero set

Z(f ) := {
x : f (x) = 0

}
,

and its complement N(f ) := B\Z(f ). Note that Z(f ) and N(f ) are ν-measurable.
In addition, for f ∈ L1(B, ν), we set

sgn
(
f (x)

) :=
{1, f (x) > 0,

0, f (x) = 0,
−1, f (x) < 0.

The following is the well-known elementary characterization of best approximation
from linear subspaces in L1(B, ν). This result goes back to James [13] and Kripke,
Rivlin [16], see also Pinkus [30, Theorem 2.1].

Theorem 1 Let M be a linear subspace of L1(B, ν) and f ∈ L1(B, ν)\M . Then m∗
is a best L1(B, ν)-approximant to f from M if and only if∣∣∣∣

∫
B

m sgn
(
f − m∗)dν

∣∣∣∣ ≤
∫

Z(f −m∗)
|m|dν

for all m ∈ M . In addition, if strict inequality holds for all m ∈ M , m �= 0, then m∗ is
the unique best L1(B, ν)-approximant to f from M .

Thus, we see that the identically zero function is a best L1(B, ν)-approximant to
f from the linear subspace M if and only if∣∣∣∣

∫
B

m sgn(f ) dν

∣∣∣∣ ≤
∫

Z(f )

|m|dν
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for all m ∈ M , or equivalently,∣∣∣∣
∫

N(f )

m sgn(f ) dν

∣∣∣∣ ≤
∫

Z(f )

|m|dν

for all m ∈ M . In fact, the subspace property of M is not necessary. We have:

Proposition 2 Let M be a homogeneous subset; i.e., m ∈ M implies cm ∈ M for all
c ∈ R. Then the zero function is a best L1(B, ν)-approximant to f from M if and only
if ∣∣∣∣

∫
N(f )

m sgn(f ) dν

∣∣∣∣ ≤
∫

Z(f )

|m|dν

for all m ∈ M .

This is a simple consequence of the fact that the above is equivalent to the zero
function being a best L1(B, ν)-approximant to f from each 1-dimensional subspace
span{m}, with m ∈ M .

From Proposition 2, we easily obtain:

Proposition 3 Let M be a homogeneous subset of L1(B, ν). Let Z be any
ν-measurable subset of B , and N = B\Z. Then the zero function is a best L1(B, ν)-
approximant from M to every f ∈ L1(B, ν) that vanishes on Z if and only if∫

N

|m|dν ≤
∫

Z

|m|dν (1)

for all m ∈ M .

Indeed, given m ∈ M , (1) follows from Proposition 2 by taking any f ∈ L1(B, ν)

with Z(f ) = Z and sgn(f ) = sgn(m) on N . Equation (1) is a sufficient but not nec-
essary condition implying that the zero function is a best L1(B, ν)-approximant from
M to a particular f ∈ L1(B, ν).

Based on Proposition 3, it is natural to ask how large N might be for a given linear
subspace M of L1(B, ν). In Pinchasi, Pinkus [29], it is shown that if M is any finite-
dimensional linear subspace of L1[0,1] consisting of continuous functions, then for
every ε > 0 there exists a subset N ⊂ [0,1] of Lebesgue measure at least 1/2 − ε

such that (1) holds. (Note that if M contains the constant function, then N cannot
have measure larger than 1/2.) And, if n is fixed, and M is an n-dimensional linear
subspace of R

m (with the usual �m
1 -norm), then there exists a subset N ⊂ {1, . . . ,m}

of cardinality (1/2 − o(1))m such that (1) holds.
When is the zero function a best L1(B, ν)-approximant from M to every f ∈

L1(B, ν) that does not vanish on a set of measure at most α > 0? It follows from
Proposition 3 that we have:

Corollary 4 Fix α > 0, and let M be a homogeneous subset of L1(B, ν). Then the
zero function is a best L1(B, ν)-approximant from M to every f ∈ L1(B, ν) with
ν(N(f )) ≤ α if and only if ∫

N

|m|dν ≤
∫

Z

|m|dν,
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or, equivalently,

2
∫

N

|m|dν ≤ ‖m‖1

for all m ∈ M and all N such that ν(N) ≤ α. Thus, the zero function is a best
L1(B, ν)-approximant from M to every f ∈ L1(B, ν) that does not vanish on a set of
measure at most α > 0 if and only if

sup
m∈M

sup
{N :ν(N)≤α}

∫
N

|m|dν

‖m‖1
≤ 1

2
.

The quantity

|||f |||α := sup
{N :ν(N)≤α}

∫
N

|f |dν

for α > 0 is a norm (provided there are no atoms of measure strictly larger that α,
otherwise it is a seminorm). We can thus restate Corollary 4 as:

Corollary 5 Fix α > 0, and let M be a homogeneous subset of L1(B, ν). Then the
zero function is a best L1(B, ν)-approximant from M to every f ∈ L1(B, ν) with
ν(N(f )) ≤ α if and only if

Rα := sup
m∈M

|||m|||α
‖m‖1

≤ 1

2
. (2)

Moreover, if strict inequality holds in (2), then the zero function is the unique best
L1(B, ν)-approximant from M to every such f .

Equivalently, (2) holds if and only if for every set of measure at most α > 0 and
every f that is zero off this set, there exists a continuous linear functional that attains
its norm on f and annihilates M .

When Rα is strictly less than 1/2, we actually have strong uniqueness, see Pinkus
[30, p. 18] or Kroó, Pinkus [18].

Proposition 6 Let M be a homogeneous subset, and assume that for a given α > 0
we have

sup
m∈M

|||m|||α
‖m‖1

= Rα <
1

2
.

If ν(N(f )) ≤ α, then the zero function is the unique best L1(B, ν)-approximant from
M to f , and

‖f − m‖1 − ‖f ‖1 ≥ (1 − 2Rα)‖m‖1

for all m ∈ M .

The characterization of best L1(B, ν)-approximants was used to explicate and mo-
tivate Corollary 5. In fact, the previous two results can be both generalized and easily
proven directly, as follows.
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Let G be any real-valued function on M such that G(0) = 0 and ‖m‖1 +G(m) > 0
for all m ∈ M , m �= 0. Consider the problem

inf
m∈M

{‖f − m‖1 + G(m)
}
. (3)

Theorem 7 Fix α > 0, and let M be a homogeneous subset of L1(B, ν). Then

sup
m∈M

|||m|||α
‖m‖1 + G(m)

≤ 1

2

if and only if the zero function is a solution of (3) for each f with ν(N(f )) ≤ α.

Proof Assume

sup
m∈M

|||m|||α
‖m‖1 + G(m)

≤ 1

2
.

Then ν(N) ≤ α implies

2
∫

N

|m| ≤ ‖m‖1 + G(m),

which is equivalent to ∫
N

|m| ≤
∫

Nc

|m| + G(m).

For f that vanishes off N , and any m ∈ M ,

‖f ‖1 + G(0) = ‖f ‖1 =
∫

N

|f | ≤
∫

N

|f − m| +
∫

N

|m|

≤
∫

N

|f − m| +
∫

Nc

|m| + G(m) = ‖f − m‖1 + G(m).

Thus, m = 0 is a solution to (3).
Now, assume m = 0 is a solution to (3) for every f that vanishes off a set of

measure at most α. Fix any m∗ ∈ M , m∗ �= 0, and N with ν(N) ≤ α. Let f = m∗ on
N and vanish off N . Since m = 0 is a solution to (3), it follows that

‖f ‖1 = ‖f − 0‖1 + G(0) ≤ ∥∥f − m∗∥∥
1 + G

(
m∗);

i.e., ∫
N

∣∣m∗∣∣ ≤
∫

Nc

∣∣m∗∣∣ + G
(
m∗),

which is equivalent to

2
∫

N

∣∣m∗∣∣ ≤ ∥∥m∗∥∥
1 + G

(
m∗),

implying ∫
N

|m∗|
‖m∗‖1 + G(m∗)

≤ 1

2
.
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As this is valid for every set N of measure at most α, we have

|||m∗|||α
‖m∗‖1 + G(m∗)

≤ 1

2

for every m∗ ∈ M . �

Consider, for example, G(m) = λ‖m‖1, where λ > −1 (needed so that ‖m‖1 +
G(m) > 0 for m ∈ M , m �= 0). For −1 < λ < 0, we are looking at strong uniqueness;
i.e., this is just a repeat of Proposition 6. The case λ ≥ 1 is valueless, since

‖f ‖1 ≤ ‖f − m‖1 + ‖m‖1 ≤ ‖f − m‖1 + λ‖m‖1

for every m ∈ M , and thus m = 0 always attains the above infimum. For 0 < λ < 1,
this result is of some interest. It shows us how, with the regularization term λ‖m‖1,
the associated α for which (3) holds grows with λ.

Of interest, given M , is to try to determine the largest α (if such exists) for which
(2) holds. The main subject of this paper will be the study of the parameter

α∗(M) = sup

{
α : sup

m∈M

|||m|||α
‖m‖1

≤ 1

2

}
.

It follows that if α < α∗(M), and f ∈ L1(B, ν) vanishes off a set of measure α, then
the zero function is the best L1(B, ν)-approximant from M to f . Conversely, given
any α > α∗(M), there exists an f ∈ L1(B, ν), vanishing off a set of measure α, for
which the zero function is not a best L1(B, ν)-approximant from M to f .

If ν is a nonatomic measure (or a purely atomic measure with a finite number of
atoms), then the above exterior supremum is a maximum. Easy examples show that
this is not necessarily true in general.

We start the study of α∗(M) with a basic result. Recall that a subset K ⊂ L1(B, ν)

is uniformly integrable if for every ε > 0 there exists a δ > 0 such that
∫
A

|f |dν < ε

for every f ∈ K and every set A ⊆ B satisfying ν(A) < δ.
In the examples of this paper, we consider only nonatomic measures. As such, and

in order to avoid unnecessary explanation, we shall assume in what follows that ν is
a nonatomic measure. However, these next results, with correct interpretation, also
hold without this assumption.

Theorem 8 Let M be a closed linear subspace of L1(B, ν), and consider the follow-
ing conditions:

(i) M is reflexive,
(ii) M does not contain a subspace isomorphic to �1,

(iii) the unit ball B(M) = {m : ‖m‖1 ≤ 1} of M is uniformly integrable,
(iv) α∗(M) > 0.

Then (i) ⇔ (ii) ⇒ (iii) ⇒ (iv). When ν is finite, all four conditions are equivalent.

Remark It follows that if M ⊂ L1(B, ν) is a finite-dimensional subspace, then
α∗(M) > 0, since every finite-dimensional space is reflexive. Note also that if M

is a subspace of finite codimension, then α∗(M) = 0, since the unit ball of a subspace
M of finite codimension contains functions of arbitrarily small support.
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Before proving Theorem 8, we need some preliminary results.

Lemma 9 Let K be a weakly closed set in L1(B, ν). Then K is weakly compact if
and only if it is uniformly integrable and there are sets Bn with finite measure for
which limn→∞

∫
B\Bn

f dν = 0 uniformly for f ∈ K .

Proof See Dunford, Schwartz [7, Corollary IV.8.11] for the proof when ν is finite
(and the uniformity condition is then clearly redundant). For the general case, see
Dunford, Schwartz [7, Exercise IV.13.54]. �

The following lemma and theorem are due to Kadec, Pelczynski [15] (the indicator
function of a set A is denoted by χA).

Lemma 10 Let ν be a finite measure, and let {fn} be a bounded nonuniformly inte-
grable sequence in L1(B, ν). Then, there are a τ > 0, a subsequence {fnk

}, and dis-
joint sets Ak such that lim

∫
Ak

|fnk
|dν = τ and such that the sequence hnk

= χAc
k
fnk

is weakly convergent.

Theorem 11 A close subspace of L1(B, ν) is reflexive if and only if it does not con-
tain a subspace isomorphic to l1.

Proof of Theorem 8 The equivalence of (i) and (ii) is Theorem 11. Since the unit ball
of a reflexive space is weakly compact, Lemma 9 shows that (i) implies (iii) and that
they are equivalent when ν is finite.

That (iii) implies (iv) is immediate (and does not depend on the finiteness of ν).
Just choose any δ > 0 for which ν(A) < δ, ‖m‖ ≤ 1, and m ∈ M imply that∫
A

|m|dν < 1/2, and it follows that α∗(M) ≥ δ.
Finally, to prove that (iv) implies (ii) when ν is finite, assume that B(M) contains

a sequence {mn} that is not uniformly integrable. We shall show that α∗(M) = 0. By
Lemma 10, there are a subsequence (which we assume, to simplify notation, is the
original sequence), τ > 0, and disjoint sets Aj such that

∫
Aj

|mj |dν → τ and such
that hj = χAc

j
mj is weakly convergent. Then h2j+1 −hjn converges weakly to 0, and

it follows that there are convex combinations φn of (h2j+1 − h2j )/2 that converge
in norm to zero; i.e., there are disjoint sets Jn of indices and coefficients λn

j , for
j ∈ Jn, with

∑
j∈Jn

|λn
j | = 1 such that the φn = ∑

j∈Jn
λn

jhj satisfy ‖φn‖ → 0. Note
that since the summands of ψn = ∑

j∈Jn
λn

j (mj − hj ) are supported in the disjoint
sets Aj , for j ∈ Jn, it follows that the Bn = ⋃

j∈Jn
Aj are disjoint, and that ‖ψn‖ =∫

Bn
|ψn|dν → τ .

Now fix ε < τ/6, and choose n sufficiently large so that τ − ε < ‖ψn‖ < τ + ε,
‖φn‖ < ε and ν(Bn) < ε. Then the function Fn = ∑

j∈Jn
λn

jmj = ψn + φn ∈ M sat-
isfies ‖Fn‖ ≤ ‖ψn‖ + ‖φn‖ < β + 2ε < 2(τ − 2ε) by our choice of ε. Thus,∫

Bn

|Fn|dν ≥
∫

Bn

|ψn|dν −
∫

Bn

|φn|dν ≥
∫

Bn

|ψn|dν − ‖φn‖ > τ − 2ε >
1

2
‖Fn‖,

and ν(Bn) < ε, which implies that α∗(M) < ε. As ε was arbitrarily chosen, it follows
that α∗(M) = 0. �
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Remark The following examples show that (iii) or (iv) do not imply (ii) when ν is
infinite. Let M be the subspace of L1(R) spanned by the functions χ[n,n+1]. Then
M is isometric to l1, yet B(M) is uniformly integrable and α∗(M) = 1/2. To obtain
an example of a space isometric to l1 with α∗(M) > 0 and a nonuniformly integrable
unit ball, fix a sequence δn → 0 and take the span of fn = δ−1

n χ[n,n+δn] +χ[n+δn,n+1].

What is the connection between this theoretical L1-approximation problem and
the subject of sparse representations (compressed sampling)? Consider the following
model. Let V be a linear space, and let L : L1(B, ν) → V be a linear operator with
kernel M ; i.e., Lm = 0 for all m ∈ M . Assume that Lf = v and f vanishes off a set
of measure smaller than α∗(M). Then

inf{h:Lh=v} ‖h‖1 = inf
m∈M

‖f − m‖1 = ‖f ‖1,

and f uniquely attains this infimum. Thus, there cannot exist two distinct solutions to
Lh = v that vanish off sets of measure smaller than α∗(M). In other words, if among
the solutions h of Lh = v there exists a solution that vanishes off a set of measure at
most α for some α < α∗(M), then it is the unique such solution, and it is obtained by
solving the problem

inf{h:Lh=v} ‖h‖1.

The theory of sparse representations deals with exactly this problem in the discrete
setting, i.e., when L is an n × m matrix. The interested reader may consult Elad [8],
and the references therein.

Remark We consider in this paper real-valued functions and spaces. Many of these
results are also valid in the complex-valued setting.

3 Lower and Upper Bounds for α∗(M)

In this section, we consider theoretical lower and upper bounds on α∗(M). Unfortu-
nately, there do not seem to be many of either.

There is clearly no strictly positive lower bound on α∗(M) valid even for all
1-dimensional M . Indeed, if M = span{m} and ν(N(m)) < 2ε, then necessarily
α∗(M) < ε. However, for many classic examples, lower bounds do exist. The fol-
lowing elementary result will prove surprisingly useful.

Proposition 12 Assume that M ⊆ Lp(B,ν) for some p ∈ (1,∞]. Define

Ap := sup
m∈M

‖m‖p

‖m‖1
,

and assume that Ap < ∞. Then

α∗(M) ≥ 1

(2Ap)p
′ ,

where, as usual, 1/p + 1/p′ = 1.
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Proof Hölder’s inequality gives, for each α > 0,

|||m|||α ≤ α1/p′ ‖m‖p.

Thus,

|||m|||α
‖m‖1

≤ α1/p′ ‖m‖p

‖m‖1
,

and

sup
m∈M

|||m|||α
‖m‖1

≤ sup
m∈M

α1/p′ ‖m‖p

‖m‖1
= α1/p′

Ap.

Hence,

sup
m∈M

|||m|||α
‖m‖1

≤ 1

2
,

whenever α1/p′
Ap ≤ 1/2, implying that

α∗(M) ≥ 1

(2Ap)p
′ . �

Nikolskii-type inequalities are inequalities of the form

‖m‖p ≤ Cp,q‖m‖q

for a given class of functions, where ‖ · ‖p and ‖ · ‖q are the usual Lp and Lq norms,
respectively, see, e.g., Nikolskii [27]; Szegő, Zygmund [32]; Timan [34]; and Milo-
vanović, Mitrinović, Rassias [23]. Note that Ap = Cp,1 for the class of functions M .
Thus, Nikolskii-type inequalities have immediate consequences for our problem. Nu-
merous Nikolskii-type inequalities may be found in the literature. We list some of
these inequalities and their consequences in Sect. 4.

Lower bounds on α∗(M) can also be obtained, under suitable conditions on the
subspace M and/or the domain B , via other inequalities. Two such conditions (both
stronger than Nikolskii-type inequalities) are Bernstein–Markov inequalities (see
Proposition 13(ii)) and Remez inequalities (see Proposition 14).

Let B be a compact metric space, and recall that a subset A ⊂ C(B) is said to
be equicontinuous if there is a continuous function ω(ε) > 0, defined for 0 < ε ≤
diam(B), with limε→0+ ω(ε) = 0 so that d(x, y) < ε implies |f (x) − f (y)| < ω(ε)

for all f ∈ A. Such a function ω(ε) is called a modulus of continuity for A.
Let B ⊂ R

d be convex and compact with nonempty interior, and let ν be the
Lebesgue measure on B . If M is a linear subspace of C(B) consisting of functions
differentiable in the interior of B , then the Bernstein–Markov Factor of M is

b(M) := sup
m∈M

‖m′‖∞
‖m‖∞

.

(Here m′ stands for the gradient of m, and ‖m′‖∞ is the sup of the �d
2 -norm of m′.)

Proposition 13 Let M be a subspace of C(B) of dimension > 1. Let B ⊂ R
d be con-

vex and compact with nonempty interior, and let ν be the Lebesgue measure on B .
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(i) Assume that the unit ball of M , under the uniform norm, is equicontinuous with
modulus of continuity ω(ε). Then there is a constant C > 0, depending only
upon B , so that

α∗(M) ≥ C max
t∈(0,1]

(1 − t)
(
ω−1(t)

)d ≥ C

2

(
ω−1(1/2)

)d
.

(ii) Assume, in addition, that the functions in M are differentiable in the interior
of B . Then there is a constant C > 0, depending only upon B , such that

α∗(M) ≥ C

b(M)d
.

Proof We shall use the simple geometric observation that there is a constant c > 0,
depending only upon B , so that for any ball B(y, ε) centered at some point y ∈ B

and of radius 0 < ε ≤ diam(B), we have

ν
(
B(y, ε) ∩ B

) ≥ cεd .

(i) We shall show that

A∞ = sup
m∈M

‖m‖∞
‖m‖1

≤ 1

c(1 − t)(ω−1(t))d

for every t ∈ (0,1]. The result then follows from Proposition 12, with C = c/2. Since
dimM > 1, there exists a m̃ ∈ M with ‖m̃‖∞ = 1 which vanishes at some point in B .
Thus, the range of ω includes (0,1] and therefore the value t . Let m ∈ M satisfy
‖m‖∞ = 1, and let y ∈ B be such that |m(y)| = 1. Taking ε = ω−1(t), we obtain that
|m(z)| ≥ 1 − t whenever z ∈ B(y, ε) ∩ B . Thus,

‖m‖1 ≥
∫

B(y,ε)∩B

|m|dν ≥ (1 − t)ν
(
B(y, ε) ∩ B

) ≥ (1 − t) c εd

= c (1 − t)
(
ω−1(t)

)d
.

(ii) By the Mean Value theorem every m ∈ M with ‖m‖∞ = 1 satisfies∣∣m(x) − m(y)
∣∣ ≤ ‖y − x‖∥∥m′∥∥∞ ≤ b(M)‖y − x‖.

It follows that M satisfies the conditions of (i) with ω(ε) ≤ b(M)ε for 0 < ε ≤
diam(B), and ω−1(1/2) ≥ 1

2b(M)
. �

Remark (i) The convexity of B was used twice in the proof of Proposition 13. It was
used to obtain the lower estimate on the measure of balls centered in B , and used
in the application of the Mean Value theorem in part (ii). These properties can also
be ensured by suitable geometric conditions for more general subsets of R

d and for
more general compact metric spaces. For example, the Mean Value theorem can be
similarly applied for subsets of R

d for which there is a constant C > 0 so that any two
points x, y ∈ B can be connected by a differentiable curve whose length is bounded
by C‖x − y‖.

(ii) The estimates in Proposition 13 may fail when dimM = 1 because m need
not vanish on B . An extreme example of this is when M consists of the constant
functions.
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Let B be a compact subset of R
d , and ν the Lebesgue measure on B . The Remez

Factor of a subspace M of C(B) is given by:

rB(M; δ) := sup

{ ‖m‖C(B)

‖m‖C(Bδ)

: m ∈ M, Bδ ⊆ B, ν(Bδ) ≥ (1 − δ)ν(B)

}
.

Inequalities for Remez factors imply Nikolski-type inequalities. We prove the follow-
ing result.

Proposition 14 Let M be a linear subspace of C(B), with B , ν, and rB(M; δ) as
above. Then

α∗(M) ≥ sup
{δ:0<δ<1}

δν(B)

2rB(M; δ) .

Proof Let m ∈ M be such that ‖m‖1 = 1, and fix δ ∈ (0,1). Set Q(m; δ) =
{x : |m(x)| ≥ 1/(δν(B))}. Then

1 = ‖m‖1 =
∫

B

∣∣m(x)
∣∣dν(x) ≥

∫
Q(m;δ)

∣∣m(x)
∣∣dν(x) ≥ ν(Q(m; δ))

δν(B)
;

hence,

ν
(
B\Q(m; δ)) = ν(B) − ν

(
Q(m; δ)) ≥ (1 − δ)ν(B).

As ‖m‖C(B\Q(m;δ)) ≤ 1/(δν(B)), the definition of rB(M; δ) gives

‖m‖C(B) ≤ rB(M; δ)‖m‖C(B\Q(m;δ)) ≤ rB(M; δ)
δν(B)

,

which implies (the Nikolskii-type inequality)

A∞ ≤ rB(M; δ)
δν(B)

. �

Remark Assume that ν(B) is finite and, to simplify notation, that ν(B) = 1. Anal-
ogous to the Remez factor with respect to the C(B) norm, one can also define the
Remez factor with respect to the L1 norm by

r1
B(M; δ) := sup

{ ‖m‖L1(B)

‖m‖L1(Bδ)

: m ∈ M, Bδ ⊆ B, ν(Bδ) ≥ 1 − δ

}
.

The L1 Remez factor is closely related to the modulus of uniform integrability of
the unit ball of M . Passing to complements, we can rewrite r1

B(M; δ) as

sup

{ ‖m‖L1(B)

‖m‖L1(Nc)

: m ∈ M, N ⊂ B, ν(N) ≤ δ

}

= 1 + sup

{ ‖m‖L1(N)

‖m‖L1(Nc)

: m ∈ M, N ⊂ B, ν(N) ≤ δ

}
,

where Nc is the complement to N in B . Rewriting

α∗(M) = sup

{
α : sup

m∈M

|||m|||α
‖m‖1

≤ 1

2

}
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as the largest α for which

sup

{ ‖m‖L1(N)

‖m‖L1(Nc)

: m ∈ M, N ⊆ B, ν(N) ≤ α

}
≤ 1,

it follows that α∗(M) is the largest α > 0 for which

r1
B(M;α) ≤ 2.

Unfortunately, we have found no Remez factors with respect to the L1 norm that have
proved relevant here.

We now consider upper bounds on α∗(M). If the Mn are a nested sequence of
n-dimensional subspaces that are fundamental, i.e., for which

lim
n→∞ min

m∈Mn

‖f − m‖1 = 0 (4)

for all f ∈ L1(B, ν), then necessarily limn→∞ α∗(Mn) = 0. Indeed, α∗(Mn) is a
nonincreasing function of n, and if α∗(Mn) ≥ c > 0 for all n, then (4) cannot hold for
any f with ν(N(f )) < c. The converse need not hold, as may be easily verified.

Certain basic properties associated with good approximating subspaces imply
small upper bounds on α∗(Mn).

We recall that an n-dimensional subspace Mn of C[a, b] is said to be a weak
Tchebycheff (WT)-system on [a, b] if every m ∈ Mn has at most n − 1 sign changes
on [a, b]. That is, there does not exist an m ∈ Mn and points a ≤ x1 < · · · < xn+1 ≤ b

for which m(xi)m(xi+1) < 0, i = 1, . . . , n.

Proposition 15 Let ν be a finite nonatomic positive measure on [a, b] and Mn an
n-dimensional weak Tchebycheff (WT)-system on [a, b]. Then

α∗(Mn) ≤ ν([a, b])
n + 1

.

Proof By the Hobby–Rice theorem, see, e.g., Pinkus [30, p. 208], there exist n points
a = x0 < x1 < · · · < xn < xn+1 = b such that

n∑
i=0

(−1)i
∫ xi+1

xi

m(x)dν(x) = 0 (5)

for all m ∈ Mn.
Fix j so that

ν
([xj , xj+1]

) ≤ ν([a, b])
n + 1

.

By Zielke [36, Lemma 4.1], there is an m ∈ Mn, m �= 0, that weakly changes sign
at all the xi in (a, b) except for xj and xj+1. That is, (−1)i sgnm(x) ≥ 0 for x ∈
[xi, xi+1], i �= j , while (−1)j sgnm(x) ≤ 0 for x ∈ [xj , xj+1]. From (5) it therefore
follows that ∫ xj+1

xj

∣∣m(x)
∣∣dν(x) =

∫
[a,b]\[xj ,xj+1]

∣∣m(x)
∣∣dν(x).



Constr Approx (2012) 36:399–431 411

As m cannot vanish identically on either [xj , xj+1] or [a, b]\[xj , xj+1], we have

α∗(Mn) ≤ ν
([xj , xj+1]

) ≤ ν([a, b])
n + 1

. �

From the above proof we have the more exact:

Corollary 16 Let ν be a finite nonatomic positive measure on [a, b], and let Mn be
an n-dimensional weak Tchebycheff (WT)-system on [a, b]. Let a = x0 < x1 < · · · <
xn < xn+1 = b be the associated Hobby–Rice points. Then

α∗(Mn) ≤ min
0≤i≤n

ν
([xi, xi+1]

)
.

We will use both Proposition 15 and Corollary 16 in the next section.

4 Examples

In this and the next section we provide estimates on α∗(M) for various specific M .

4.1 Trigonometric Polynomials, Functions of Exponential Type and More

Example 1 Let B = (−π,π], and set

‖f ‖p =
(∫ π

−π

∣∣f (x)
∣∣p dx

)1/p

for p ∈ [1,∞) with the usual definition of ‖f ‖∞. Let Tn denote the space of trigono-
metric polynomials of degree n. From Ibragimov [12]; Timan [34, p. 229]; see also
DeVore, Lorentz [5, p. 102]; and Milovanović, Mitrinović, Rassias [23, p. 497]; we
have the Nikolskii-type inequalities

‖T ‖p ≤
(

2nr + 1

2π

) 1
q
− 1

p ‖T ‖q

for every T ∈ Tn, where r is the least integer ≥ q/2. (The correct asymptotics with a
worse constant may be found in Nikolskii [27], and in Jackson [14] for p = ∞ and
q = 1.) Taking p = ∞ and q = 1 gives

‖T ‖∞ ≤
(

2n + 1

2π

)
‖T ‖1.

In fact, a better bound was obtained by Taikov [33]; namely,

‖T ‖∞ ≤
(

cnn

2π

)
‖T ‖1,

where cn ∈ (1.078,1.16) + o(1). Bounds on cn have been improved upon, see Gor-
bachev [10] and references therein. Thus, A∞ ≤ (cnn)/(2π), implying, by Proposi-
tion 12, the lower bound

α∗(Tn) ≥ π

cnn
.
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It is known (and may be easily verified) that the 2n + 2 equally spaced points on
[−π,π] satisfy the Hobby–Rice theorem for Tn. As Tn is of dimension 2n + 1, this
implies by Proposition 15 that

α∗(Tn) ≤ 2π

2n + 2
= π

n + 1
.

Thus,
π

2n + 1
≤ π

cnn
≤ α∗(Tn) ≤ π

n + 1
.

Example 2 Let B = [−π,π]d , and

‖f ‖p =
(∫ π

−π

· · ·
∫ π

−π

∣∣f (x1, . . . , xd)
∣∣p dx1 · · ·dxd

)1/p

for p ∈ [1,∞) with the usual definition of ‖f ‖∞. Let K be any finite subset of Z
d ,

and let |K| denote the cardinality (number of points) in K . In Nessel, Wilmes [25], it
is proven that for each T ∈ TK = span{exp(ik · x) : k ∈ K}, we have

‖T ‖p ≤
( |K|

(2π)d

) 1
q
− 1

p ‖T ‖q

for 1 ≤ q ≤ 2, q ≤ p ≤ ∞. We use this inequality for p = ∞ and q = 1; namely,

‖T ‖∞ ≤ |K|
(2π)d

‖T ‖1,

and we provide the elementary proof as given in [25]. Let

D(x) :=
∑
k∈K

exp(ik · x)

denote the corresponding Dirichlet kernel. Since T = D ∗ T for all T ∈ TK , and
‖D‖2 = (|K|/(2π)d)1/2, then from the inequalities

‖T ‖∞ = ‖D ∗ T ‖∞ ≤ ‖D‖2‖T ‖2 = ‖D‖2‖D ∗ T ‖2 ≤ ‖D‖2
2‖T ‖1 = |K|

(2π)d
‖T ‖1,

we obtain the desired result. Thus,

α∗(TK) ≥ (2π)d

2|K| .

Let

Tm =
⋃{

TK : |K| ≤ m
}
.

Note that Tm is a not a linear subspace. Nonetheless, it is a homogeneous subset, and
we have

α∗(Tm) ≥ (2π)d

2m
.

That is, if f is a function defined on [−π,π)d whose support is of measure at most
(2π)d/(2m), then the zero function is a best L1-approximant from Tm.
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What about upper bounds? In general, α∗(TK) depends upon arithmetic and com-
binatorial properties of K , and there are no nontrivial upper estimates for it. In fact,
there are known infinite sets K for which α∗(TK) > 0. Recall that K ⊂ Z

d is called
a Λp set (p > 1) if the L1 and Lp norms are equivalent on TK ; i.e., Ap < ∞ for TK .
The constant Ap for TK is called the Λp constant of K , and we recall that by Propo-
sition 12 we have α∗(TK) ≥ 1

(2Ap)p
′ . We refer the reader to Rudin [31] for an early

exposition of this classical notion. We just mention here that (for d = 1) if K = {nk}
is a lacunary sequence, i.e., if it satisfies inf nk+1

nk
> 1, then it is already proven in Zyg-

mund [37] that K is a Λp set for all p < ∞. Of course, if K = {−n, . . . ,0, . . . , n}
then TK = Tn, as in Example 1. The analogous result holds whenever K is any set of
consecutive integers in Z.

In certain cases, we have upper bounds that asymptotically agree with the lower
bounds. For example, let T d

n denote the space of real trigonometric polynomials of
total degree at most n. That is, T d

n is the real subspace generated by span{exp(ik ·x) :
|k1| + · · · + |kd | ≤ n}. Note that the number of such coefficients k is of the order of
nd , and thus,

α∗(T d
n

) ≥ C

nd

for some constant C. We prove an upper bound of the same order with some other
generic constant C:

Proposition 17 For T d
n , as above, we have

α∗(T d
n

) ≤ C

nd

for some constant C.

Proof By the multivariate Jackson Theorem, see Timan [34, p. 273], for any f ∈
L1(B, ν), we have

En(f )L1 := inf
t∈T d

n

‖f − t‖L1 ≤ c

d∑
j=1

ωj (f,1/n)L1 ,

where ωj (f, ·)L1 denotes the L1-modulus of continuity with respect to the j th vari-
able, and c is some generic constant.

Let A be any cube in B with edge length a, and denote by χA the indicator function
of A; i.e., χA = 1 on A, and 0 otherwise. Clearly, for any h > 0, we have

ωj (χA,h)L1 ≤ 2ad−1h, j = 1, . . . , d.

Thus, by Jackson’s theorem,

En(χA)L1 ≤ 2cd
ad−1

n
.

Set a := (α∗(T d
n ))1/d . Then ν(A) = ad = α∗(T d

n ). By the definition of α∗(T d
n ), the

zero function is a best L1-approximant to χA from T d
n ; i.e.,

α∗(T d
n

) = ν(A) = ‖χA‖1 = En(χA)L1 ≤ 2cd
ad−1

n
= 2cd

α∗(T d
n )(d−1)/d

n
,
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that yields

α∗(T d
n

) ≤
(

2cd

n

)d

. �

Example 3 In this and the next two examples, B = R
d , and we take the usual L1(Rd)

norm. From Nessel, Wilmes [25], we also have the following result. Let f ∈ L1(Rd),
and assume its Fourier transform f̂ has compact support. Then f ∈ L∞(Rd) and

‖f ‖∞ ≤
( | supp f̂ |

(2π)d

)
‖f ‖1,

where | supp f̂ | is the Lebesgue measure of the support of f̂ . The proof of this fact
is similar to the proof of the analogous result in the previous example. Thus, if K is
any compact set of finite measure, and SK denotes the space of functions in L1(Rd)

whose Fourier transform have their support in K , then

α∗(SK) ≥ (2π)d

2|K| .

And if

Sβ =
⋃{

SK : |K| ≤ β
}
,

then

α∗(Sβ) ≥ (2π)d

2β
.

Note that Sβ is a homogeneous set, but is not a linear subspace. The above states that
if f is a function in L1(Rd) whose support is of measure at most (2π)d/(2β), then
the zero function is a best L1-approximant from Sβ .

Example 4 Let Gσ1,...,σd
denote the space of entire functions f defined on C

d of
rectangular exponential type σ1, . . . , σd > 0. That is, f ∈ Gσ1,...,σd

if f is entire and
for every ε > 0 there exists a constant Cε such that

∣∣f (z)
∣∣ ≤ Cε exp

{
d∑

k=1

(σk + ε)|zk|
}

for all z ∈ C
d . When d = 1, we have that f ∈ Gσ if

f (z) =
∞∑

k=0

akz
k,

where

lim sup
k→∞

(
k!|ak|

)1/k ≤ σ.

From Ibragimov [12]; see also Nessel, Wilmes [25] (and references therein); Nikol-
skii [27]; Timan [34, p. 234]; and Nikolskii [28, p. 126]; we have the following
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Nikolskii-type inequality. Let f ∈ L1(Rd) be the restriction to R
d of an entire func-

tion of rectangular exponential type σ1, . . . , σd > 0. Then f belongs to L∞(Rd), and

‖f ‖∞ ≤
(

d∏
k=1

σk

π

)
‖f ‖1.

This therefore implies that

α∗(Gσ1,...,σd
) ≥ 1

2

(
d∏

k=1

π

σk

)
.

Example 5 From Nessel, Wilmes [25], we also have the following result. Let Hσ

denote the space of entire functions defined on C
d of radial type σ > 0. That is,

f ∈ Hσ if f is entire and for every ε > 0 there exists a constant Cε such that
∣∣f (z)

∣∣ ≤ Cε exp
{
(σ + ε)|z|}

for all z ∈ C
d . If f ∈ L1(Rd) is the restriction to R

d of an entire function of radial
type σ , then

‖f ‖∞ ≤
(

σd

dΓ (d/2)2d−1πd/2

)
‖f ‖1.

This therefore implies the lower bound

α∗(Hσ ) ≥
(

dΓ (d/2)2d−2πd/2

σd

)
.

4.2 Algebraic Polynomials, Splines, Müntz Polynomials and More

Example 6 Let B = [0,1], and Πn denote the set of algebraic polynomials of degree
at most n. In Ho Tho Kau [11]; see also Amir, Ziegler [1]; it is shown that A∞ ≤
(n + 1)2, implying the lower bound

α∗(Πn) ≥ 1

2(n + 1)2
.

(The standard Nikolskii-type inequalities as found in Timan [34, p. 236] and DeVore,
Lorentz [5, p. 102] are somewhat weaker.) The points that satisfy the Hobby–Rice
theorem are known. They are the zeros of the Chebyshev polynomials of the second
kind, renormalized to the interval [0,1]. As such,

min
0≤i≤n

{xi+1 − xi} = x1 − x0 = xn+1 − xn = 1 − cos(π/(n + 2))

2
≤ π2

4(n + 2)2
.

Thus, from Corollary 16,

1

2(n + 1)2
≤ α∗(Πn) ≤ π2

4(n + 2)2
.
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Example 7 Let B = R, and Πn denote the set of algebraic polynomials of degree
at most n. As a special case of Mhaskar [22], we have the following Nikolskii-type
inequalities. For γ ≥ 2, let wγ (x) = e−|x|γ . Then, for each P ∈ Πn, we have

‖wγ P ‖p ≤ (
γ 1/γ n1−1/γ

) 1
q
− 1

p ‖wγ P ‖q

for every 1 ≤ q ≤ p ≤ ∞. Taking p = ∞ and q = 1 gives

‖wγ P ‖∞ ≤ (
γ 1/γ n1−1/γ

)‖wγ P ‖1.

Thus, A∞ ≤ γ 1/γ n1−1/γ , implying the lower bound

α∗(wγ Πn) ≥ 1

2γ 1/γ n1−1/γ
.

This example was generalized by Nevai, Totik [26] to the case where 0 < γ < 2.
They proved that

‖wγ P ‖∞ ≤ cΛn(γ )‖wγ P ‖1

for some constant c that depends only upon γ , where

Λn(γ ) =
⎧⎨
⎩

n1−1/γ , 1 < γ < 2,
lnn, γ = 1,
1, 0 < γ < 1.

Thus, we obtain

α∗(wγ Πn) ≥ C

n1−1/γ

for 1 < γ < 2, while for γ = 1,

α∗(w1Πn) ≥ C

lnn
,

and for 0 < γ < 1,

α∗(wγ Πn) ≥ C

for some constants C > 0 that depend only upon γ . (Note that the last of these lower
bounds does not tend to 0 as n → ∞.) Nikolskii-type inequalities for other weighted
algebraic polynomials on all of R (with properties similar to those in the next Exam-
ple 8) may be found in Mthembu [24].

Example 8 Let B = [−1,1], and Πn denote the set of algebraic polynomials of de-
gree at most n. Lubinsky, Saff [21] consider Nikolskii-type inequalities for algebraic
polynomials on B with weights of the form w := exp(−Q) where Q satisfies:

(i) Q is even and continuously differentiable in (−1,1), while Q′′ is continuous in
(0,1);

(ii) Q′ ≥ 0 and Q′′ ≥ 0 in (0,1);
(iii)

∫ 1
0 tQ′(t)/

√
1 − t2 dt = ∞ ;
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(iv) the function

T (x) := 1 + xQ′′(x)

Q′(x)
, x ∈ (0,1),

is increasing in (0,1), T (0+) > 1 and T (x) = O(Q′(x)), as x → 1−.

The constants am := am(Q), defined by

m = 2

π

∫ 1

0

amtQ′(amt)√
1 − t2

dt,

are called the mth Mhaskar–Rahmanov–Saff numbers. Lubinsky, Saff [21] proved
that for every such weight w and for P ∈ Πn, we have

‖wP ‖p ≤ c
(
nT (a2n)

1/2)1/q−1/p‖wP ‖q

for all 0 < q < p ≤ ∞ for some universal constant c. Setting p = ∞ and q = 1, we
obtain

α∗(wΠn) ≥ C

nT (a2n)1/2

for some constant C.

Example 9 Let B = [−1,1] and GAPn denote the set of all generalized nonnegative
algebraic polynomials of degree n, i.e., the set of functions

P(x) = λ

m∏
j=1

|x − xj |rj ,

where λ ∈ R, rj > 0 (not necessarily integers), xj ∈ C, and

n :=
m∑

j=1

rj .

(Note that the m is arbitrary and n is not necessarily an integer.) GAPn is not a linear
subspace, but it is a homogeneous set. From Borwein, Erdélyi [4, p. 395], we have
for 0 < q < p ≤ ∞ the Nikolskii-type inequalities

‖P ‖p ≤
(

e2(2 + qn)

2π

)2/q−2/p

‖P ‖q

for every P ∈ GAPn. Setting p = ∞ and q = 1 gives

‖P ‖∞ ≤
(

e2(2 + n)

2π

)2

‖P ‖1.

Thus,

α∗(GAPn) ≥ 2π2

e4(2 + n)2
.

Similar results hold for generalized nonnegative trigonometric polynomials, see Bor-
wein, Erdélyi [4, p. 394], where the asymptotics is of order 1/n.



418 Constr Approx (2012) 36:399–431

Example 10 Let B = [0,1] and Sn,r denote the space of splines of degree n with r

simple knots at {i/(r +1)}ri=1. That is, Sn,r is the subspace of functions in Cn−1[0,1]
that, when restricted to each [(i−1)/(r +1), i/(r +1)], i = 1, . . . , r +1, are algebraic
polynomials of degree at most n. We have, for Sn,r ,

1

2(r + 1)(n + 1)2
≤ α∗(Sn,r ) ≤ 1

n + r + 2
.

The upper bound is a consequence of Proposition 15, since Sn,r is a WT-system of
dimension n + r + 1. The lower bound follows from the estimate in Example 6: Let
Qn,r denote the space of functions whose restriction to [(i − 1)/(r + 1), i/(r + 1)],
i = 1, . . . , r + 1, are algebraic polynomials of degree at most n; i.e., there are no
continuity restrictions at the knots {i/(r + 1)}ri=1. As Sn,r ⊆ Qn,r , we have

A∞ = sup
s∈Sn,r

‖s‖∞
‖s‖1

≤ sup
q∈Qn,r

‖q‖∞
‖q‖1

.

From Example 6, we have

‖P ‖∞ ≤ (n + 1)2‖P ‖1

for every P ∈ Πn on [0,1]. A simple change of variable argument therefore implies
that

‖q‖∞ ≤ (r + 1)(n + 1)2‖q‖1

for every q ∈ Qn,r which vanishes on r of the r + 1 intervals [(i − 1)/(r + 1),

i/(r + 1)], i = 1, . . . , r + 1, hence for every q ∈ Qn,r . This gives the lower bound for
α∗(Sn,r ).

When n = 0, i.e., S0,r is the space of piecewise constants with knots at
{i/(r + 1)}ri=1, then it is readily verified that α∗(S0,r ) = 1/2(r + 1).

Example 11 Let B = [0,1]. We will look at a subclass of Müntz polynomials. Let 0 =
λ1 < λ2 < · · · < λn, where λk+1 − λk ≥ 1 for every k. Set Λn = span{xλ1, . . . , xλn}.
Then, see Borwein, Erdélyi [4, p. 298], we have the Nikolskii-type inequalities

‖g‖p ≤
(

18 · 2q

n∑
k=1

λk

)1/q−1/p

‖g‖q,

for all g ∈ Λn, and for any 0 < q < p ≤ ∞. Setting q = 1 and p = ∞, we obtain

α∗(Λn) ≥ 1

72
∑n

k=1 λk

.

Note that as λk+1 − λk ≥ 1 for every k, it follows that 72
∑n

k=1 λk ≥ 36n(n − 1).
(From the Bernstein inequality in Borwein, Erdélyi [4, p. 287] and Proposition 13(ii),
we get a similar estimate.) Λn is a WT-system on [0,1] for any choice of 0 ≤ λ1 <

λ2 < · · · < λn. As such, Proposition 15 gives

α∗(Λn) ≤ 1

n + 1
,

which is undoubtedly not sharp, as it is independent of the values of the λk’s.
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Example 12 Let B = [0,∞), and Γn[0,∞] = span{e−γ1x, . . . , e−γnx}, where the γk

are distinct positive numbers. Then, see Borwein, Erdélyi [4, p. 281], we have the
Nikolskii-type inequalities over [0,∞) of

‖g‖p ≤
(

18 · 2q
n∑

k=1

γk

)1/q−1/p

‖g‖q,

for any 0 < q < p ≤ ∞ and every g ∈ Γn[0,∞]. Set q = 1 and p = ∞ to obtain

α∗(Γn[0,∞]) ≥ 1

72
∑n

k=1 γk

.

Note that as there is no gap condition on the {γk} (as in the previous Example 11),
then for any c > 0 we can find an infinite number of distinct positive numbers {γk}
such that

α∗(Γn[0,∞]) ≥ c

for all n.

Example 13 Let B = [a, b] be any finite interval, and Γn[a, b] = span{e−γ1x, . . . ,

e−γnx}, where the γk are distinct real numbers. From Erdélyi [9], we have the
Nikolskii-type inequalities over [a, b] of

‖g‖p ≤ c

(
n2 +

n∑
k=1

|γk|
)1/q−1/p

‖g‖q,

for any 0 < q < p ≤ ∞ and every g ∈ Γn[a, b]. The constant c depends upon p, q , a

and b. Set q = 1 and p = ∞ to obtain

α∗(Γn[a, b]) ≥ C

n2 + ∑n
k=1 |γk|

for some constant C depending on a and b.

Example 14 For a convex body K in R
d , we denote by ωK its width, i.e., the minimal

distance between two parallel supporting hyperplanes of K . A set B is said to be
noncuspidal if there exists a constant cB > 0 such that each point of B is contained
in some convex subset K ⊆ B whose width is larger than cB .

Let B be a compact noncuspidal subset of R
d , and let ν be the d-dimensional

Lebesgue measure on B . Let Πd
n denote the space of algebraic polynomials of total

degree at most n; that is,

Πd
n :=

{ ∑
|k|≤n

akx
k : ak ∈ R, k ∈ Z

d+, x ∈ R
d

}
,

where for x = (x1, . . . , xd) ∈ R
d and k = (k1, . . . , kd) ∈ Z

d+, we set xk = x
k1
1 · · ·xkd

d

and |k| = k1 + · · · + kd . From Kroó, Schmidt [19, p. 426], we have that

rB
(
Πd

n ; δ) ≤ exp
(
c′nδ1/(2d)

)
.
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(If B is convex, then we can set c′ = 6.) Choosing δ = (c′n)−2d ,

rB
(
Πd

n ; δ) ≤ e,

and by Proposition 14 and the choice of δ,

α∗(Πd
n

) ≥ sup
{δ:0<δ<1}

δν(B)

2rB(Πd
n ; δ) ≥ c

n2d

for some constant c > 0.
It is known, see Wilhelmsen [35], that the Bernstein–Markov factor b(Πd

n ) is
bounded above by 4n2/cB . Thus, if B is convex, then Proposition 13(ii) also gives
the lower bound

α∗(Πd
n

) ≥ c

n2d
.

This includes the case d = 1 considered in Example 6, but there we have an explicit
constant c.

Remark Kroó, Saff, Yattselev [20] studied the Remez factors of homogeneous poly-
nomials Hd

n in d variables of degree n, d ≥ 2, on star-like surfaces, namely on images
Sr of Sd−1 under maps of the form u → r(u)u, where r : Sd−1 → R+ is an even Lip
α function. Under these assumptions, the surface area is well defined, and they ob-
tained tight estimates with respect to this measure. In particular, when α = 1 (for
example when the interior of Sr is convex), they obtained that

rSr

(
Hd

n ; δ) ≤ exp

(
cnδ1/(d−1) ln

1

δ

)
.

Thus,

α∗(Hd
n

) ≥
(

c

n lnn

)d−1

.

If r is smooth, the ln terms can be eliminated in both formulae.

Example 15 As above, let B ⊂ R
d be a compact set, Πd

n denote the space of al-
gebraic polynomials of total degree at most n, and ν be the usual d-dimensional
Lebesgue measure on B . For each x ∈ B , let RB(x) denote the radius of the largest
ball contained in B such that x is on the surface of this ball. Set

R(B) := inf
x∈B

RB(x).

We say that the compact B ⊂ R
d is smooth if R(B) > 0. This condition essentially

requires that B have C2 boundary. Under these assumptions on B , it is proven, in
Kroó, Schmidt [19], that

rB
(
Πd

n ; δ) ≤ exp
(
c′nδ1/(d+1)

)
.

Choosing δ = (c′n)−(d+1) gives rB(Πd
n ; δ) ≤ e. Thus, under these assumptions on B ,

we have

α∗(Πd
n

) ≥ c

nd+1

for some constant c. Compare this with Example 14.
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Remark The notion of C2-smoothness used in the above example is based on inscrib-
ing Euclidean balls into a domain. If we use instead lp-balls, with 1 ≤ p ≤ 2, then we
are led to the more general notion of Cp-smoothness. It is shown, in Kroó [17], that
for Cp-domains the Remez factor can be bounded by

rB
(
Πd

n ; δ) ≤ exp
(
cnδ

p
2d+2p−2

)
,

hence,

α∗(Πd
n

) ≥ c

n
2d+2p−2

p

.

Note that when p = 1 (e.g., when B is convex), this leads to the lower bound of Ex-
ample 14, while for p = 2 (C2-boundary), the lower estimate of Example 15 follows.

In Examples 14 and 15, we gave two different lower bounds for α∗(Πd
n ) dependent

upon the geometry of B ⊂ R
d . We will here prove upper bounds that, up to powers of

lnn, are of the same orders, and also depend upon the geometry of B ⊂ R
d . The geo-

metric conditions on B are similar, but different, from those in Examples 14 and 15,
and we therefore consider them as distinct examples.

Example 16 As previously, assume that B is a compact subset of R
d , Πd

n is the space
of algebraic polynomials of total degree at most n, and ν is the usual d-dimensional
Lebesgue measure on B . We say that B has a vertex at a ∈ ∂B if there exist convex
polytopes D1 and D2 such that a is a vertex for both D1 and D2, and D1 ⊆ B ⊆ D2.

Proposition 18 If B , as above, has a vertex, then there exists a constant c, dependent
upon B and d but independent of n, such that

α∗(Πd
n

) ≤ c

(
lnn

n

)2d

.

Proof We assume, without loss of generality, that a = (−1,0, . . . ,0) ∈ R
d is a vertex

of B , and D1, D2 are convex polytopes such that a is a vertex for both D1 and D2,
and D1 ⊆ B ⊆ D2. We also assume, without loss of generality, that

D2 ⊂ {
x = (x1, . . . , xd) : |x1| ≤ 1

}
,

and if x ∈ D2\{a}, then x1 > −1.
It therefore follows that if

Bh = {x : x ∈ B,−1 ≤ x1 ≤ −1 + h},
then, for all h sufficiently small,

c2h
d ≤ ν(Bh) ≤ c1h

d.

Now, there exists a univariate polynomial P of degree n such that |P(t)| ≤ 1 for
all t ∈ [−1 + h,1], while |P(t)| ≥ exp(c3n

√
h) for t ∈ [−1,−1 + h/2]. (This P

can be taken to be the standard Chebyshev polynomial transformed to the interval
[−1 + h,1], see Borwein, Erdelyi [4, p. 30].)
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Thus, for P and Bh, as above,∫
B\Bh

∣∣P(x1)
∣∣dν(x) ≤ ν(B),

while ∫
Bh

∣∣P(x1)
∣∣dν(x) ≥

∫
Bh/2

∣∣P(x1)
∣∣dν(x) ≥ c4h

d exp
(
c3n

√
h

)
.

Setting h = c2
5(lnn/n)2, we obtain

c4h
d exp

(
c3n

√
h

) = c4c
2d
5

(
lnn

n

)2d

nc3c5 .

Thus, for c5 sufficiently large (but independent of n),

c4c
2d
5

(
lnn

n

)2d

nc3c5 > ν(B),

and therefore ∫
Bh

∣∣P(x1)
∣∣dν(x) >

∫
B\Bh

∣∣P(x1)
∣∣dν(x).

This implies that

α∗(Πd
n

) ≤ ν(Bh) ≤ c1h
d = c

(
lnn

n

)2d

. �

Does a similar upper bound hold for α∗(Πd
n ) for all B? It cannot, as is evident

from Example 14. In fact, again up to a (lnn)d+1 factor, the asymptotics given in
Example 15 are optimal if we assume that B has a C2 boundary.

Example 17 As previously, we assume that B is a compact subset of R
d , Πd

n is
the space of algebraic polynomials of total degree at most n, and ν is the usual
d-dimensional Lebesgue measure on B .

Proposition 19 If B , as above, has C2 boundary, then there exists a constant c,
dependent upon B and d but independent of n, such that

α∗(Πd
n

) ≤ c

(
lnn

n

)d+1

.

Proof The proof is very similar to that of Proposition 18, except that here we use
the fact that as the boundary of B is C2, then there exists a point a ∈ ∂B , and balls
B1, B2, such that a ∈ ∂B1, ∂B2 and B1 ⊆ B ⊆ B2. To see this, let B2 be the smallest
ball containing B . Then the boundaries of B and B2 must have nonempty intersection.
Let a be in this intersection. By the C2 smoothness, there exists a ball B1 ⊆ B with
a being on the boundary of B1.

As above, without loss of generality, let us assume that a = (−1,0, . . . ,0) ∈ R
d ,

and

B ⊂ {
x = (x1, . . . , xd) : |x1| ≤ 1

}
.
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Set Bh = {x : x ∈ B,−1 ≤ x1 ≤ −1 + h}. As B1 ⊆ B ⊆ B2, it follows that

c2h
(d+1)/2 ≤ ν(Bh) ≤ c1h

(d+1)/2.

We now follow the proof of Proposition 18, essentially verbatim. �

Remark In the proof of Proposition 19, we only used the property that there exists a
point a ∈ ∂B and balls B1, B2 such that a ∈ ∂B1, ∂B2 and B1 ⊆ B ⊆ B2. This can,
of course, hold without the boundary of B being C2.

Remark It would be interesting to know whether the lnn terms in Propositions 18
and 19 are necessary. Note that in the trigonometric case, this term does not appear,
see Proposition 17.

Example 18 Let B = [−1,1]d , and Πd
n be the space of algebraic polynomials of

total degree at most n. Ditzian, Tikhonov [6] consider Nikolskii-type inequalities
for this space with Jacobi weights w on the cube B . That is, let w := wα,β(x) =∏d

i=1 wαi,βi
(xi), where wαi,βi

(xi) = (1 − xi)
αi (1 + xi)

βi , αi > −1, βi > −1,
αi + βi > −1. Then, for all P ∈ Πd

n and 0 < q < p ≤ ∞, we have

‖wP ‖p ≤ cnγ (1/q−1/p)‖wP ‖q,

where c is some constant and γ = ∑d
i=1 max(2 + 2 max{αi,βi},1). Set q = 1 and

p = ∞ to obtain

α∗(wΠd
n

) ≥ C

nγ

for some other constant C. If w = 1, i.e., αi = βi = 0 for all i, we obtain α∗(Πd
n ) ≥

(C/n2d), as also follows from Example 14.

5 Dimension Independent Exact and Lower Bounds

In this section, we present three examples, or rather three families of examples, where
α∗(M) is either exactly computed or bounded below by a constant independent of the
dimension of M . The common feature of these examples, which makes it relatively
easy to do the computations, is that M will have the property that all m ∈ M with a
fixed L1 norm have the same distribution. Thus, α∗(M) can be computed by consid-
ering any m ∈ M , m �= 0.

Finding the optimal α∗(M) for a one-dimensional subspace M = span{m} is inti-
mately connected with the topic of decreasing rearrangements of functions. What im-
mediately follows is mainly taken from Bennett, Sharpley [2], but can also be found
in many other sources. We assume, as previously, that ν is a nonatomic measure.

Let m ∈ L1(B, ν). The distribution function μm of the function |m| is defined on
[0,∞) by

μm(λ) := ν
{
x : ∣∣m(x)

∣∣ > λ
}
, λ ≥ 0.
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μm is nonnegative, nonincreasing, and right-continuous on [0,∞). The decreasing
rearrangement of m is defined by

m∗(t) := inf
{
λ : μm(λ) ≤ t

}
, t ≥ 0,

where it is to be understood that the infimum of the empty set is defined as ∞. Note
that we have

m∗(t) = sup
{
λ : μm(λ) > t

}
, t ≥ 0.

Thus, m∗ may also be regarded as a distribution function (of μm) and, as such, is also
nonnegative, nonincreasing, and right-continuous on [0,∞). An important property
of m∗ is that |m| and m∗ are equimeasurable, i.e., have the same distribution function,
the former with respect to ν and the latter with respect to Lebesgue measure.

An additional important property of m∗ is that∫
B

∣∣m(x)
∣∣p dν(x) =

∫ ∞

0
m∗(t)p dt = p

∫ ∞

0
λp−1μm(λ)dλ

for all p ∈ (0,∞) (and the integrals are infinite together). Also ‖m‖∞ = ‖m∗‖∞. Our
interest is in the case p = 1, where we have∫

B

∣∣m(x)
∣∣dν(x) =

∫ ∞

0
m∗(t) dt =

∫ ∞

0
μm(λ)dλ.

As ν is nonatomic, it follows that

|||m|||α = sup
ν(N)≤α

∫
N

|m|dν =
∫ α

0
m∗(t) dt.

Thus,

|||m|||α
‖m‖1

≤ 1

2

if and only if ∫ α

0 m∗(t) dt∫ ∞
0 m∗(t) dt

≤ 1

2
.

Example 19 (Symmetric p-Stable Random Variables) A random variable m on a
probability space (B,Σ,ν) is called a symmetric p-stable random variable if there
is a constant c > 0 such that its characteristic function ϕm(t) = Eeitm is given by
ϕ(t) = e−c|t |p . The p-stable laws were introduced and studied by Paul Lévy in the
1920s, and they play an important role in probability theory. For a proof of the fol-
lowing classical theorem, see parts (i) and (iii) of Benyamini, Lindenstrauss [3, Ap-
pendix D, Theorem D.8]. (And also see there references to further basic facts on
symmetric p-stable random variables.)

Theorem 20

(i) For each 0 < p ≤ 2, there is a symmetric p-stable random variable with charac-
teristic function ϕ(t) = e−|t |p .
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(ii) If p < 2 and m is a symmetric p-stable random variable, then ‖m‖r =
(E|m|r )1/r is finite if and only if r < p. (When p = 2, we obtain Gaussian ran-
dom variables, which will be discussed in detail in the next example. In this case,
E|m|r < ∞ for every r < ∞.)

A standard fact in measure theory is that when X is any random variable and
(B,Σ,ν) is nonatomic, then it carries a random variable with the same distribution
as X. More generally, it carries a sequence of independent random variables {Xj }
with the same distribution as X.

Recall also that when X and Y are independent random variables with character-
istic functions ϕX , ϕY , respectively, then the characteristic function of aX + bY is
given by

ϕaX+bY (t) = Eeit (aX+bY ) = EeitaX
EeitbY = ϕX(at)ϕY (bt).

Now fix p ≤ 2, and let {mj } be a sequence (finite or infinite) of independent
random variables with the same characteristic function e−|t |p . It follows that if
m = ∑

ajmj , then

ϕm(t) =
∏

e−|t |p |aj |p = e−|t |p ∑ |aj |p .

Thus, m is also p-stable and has the same distribution as (
∑ |aj |p)1/pm1.

By (ii), {mj } ⊂ L1(B, ν), and we let M be the closed subspace they span in
L1(B, ν). By the above computations, every m = ∑

ajmj satisfies

‖m‖1 =
(∑

|aj |p
)1/p‖m1‖1,

and M = {∑ajmj : ∑ |aj |p < ∞}.
Now fix any r with 1 < r < p; then similarly, every m = ∑

ajmj ∈ M satisfies

‖m‖r =
(∑

|aj |p
)1/p‖m1‖r .

Thus, ‖m‖r

‖m‖1
is the constant ‖m1‖r

‖m1‖1
for all 0 �= m ∈ M , and therefore

Ar = sup
‖m‖r

‖m‖1
= ‖m1‖r

‖m1‖1
< ∞.

From Proposition 12, we obtain α∗(M) ≥ (
‖m1‖1
2‖m1‖r

)1/r ′
.

Example 20 (Gaussian Random Variables) Let (B,Σ,ν) be a nonatomic probabil-
ity space, and let {mj } be a sequence (finite or infinite) of independent standard
Gaussian random variables on (B,Σ,ν); i.e., each mj has N(0,1) distribution. Let
M = {∑ajmj : ∑ |aj |2 < ∞} be the closed linear span in L1(B, ν) of the mj ’s.
Rather then just obtaining a lower bound, as above, we shall here compute α∗(M)

explicitly to obtain:

α∗(M) = α̃ ≈ 0.239 . . .
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As in Example 19, all m ∈ M with the same L1 norm have the same distribution,
and we may therefore assume that M is actually one dimensional, spanned by an m

which is a standard Gaussian random variable on (B,Σ,ν). Thus,

ν
{
x : m(x) < λ

} = 1

(2π)1/2

∫ λ

−∞
e−s2/2 ds,

for all λ ∈ R. Using previous notation, the distribution function of each |m| is given
by

μm(λ) := ν
{
x : ∣∣m(x)

∣∣ > λ
} = 2

(2π)1/2

∫ ∞

λ

e−s2/2 ds

for all λ ≥ 0, and m∗ is given by

m∗(t) =
⎧⎨
⎩

∞, t = 0,
λ, 2

(2π)1/2

∫ ∞
λ

e−s2/2 ds = t if t ∈ (0,1),
0, t ≥ 1.

In addition,

‖m‖1 = 1

(2π)1/2

∫ ∞

−∞
|s|e−s2/2 ds =

√
2

π
.

We therefore want to calculate

α∗(M) = sup

{
α : sup

ν(N)≤α

∫
N

|m|dν ≤ 1

2

√
2

π

}
.

The interior supremum is clearly attained on the set

N = {
x : ∣∣m(x)

∣∣ > β
}
,

where β > 0 is defined by
∫

{x:|m(x)|>β}
∣∣m(x)

∣∣dν(x) = 2
∫

{x:m(x)>β}
m(x)dν(x) = 1

2

√
2

π
.

Now ∫
{x:m(x)>β}

m(x)dν(x) = 1

(2π)1/2

∫ ∞

β

se−s2/2 ds = 1

(2π)1/2
e−β2/2,

whence β = √
2 ln 2. The value α∗(M) is therefore given by

α∗(M) = ν(N) = ν
{
x : ∣∣m(x)

∣∣ >
√

2 ln 2
} = 2

(
1 − Φ

(√
2 ln 2

))
,

where Φ(t) = ν{x : m(x) ≤ t}. Using tables, we get α∗(M) := α̃ ≈ 0.239 . . . .
In fact, we conjecture the following:

Conjecture For every infinite dimensional subspace M of L1(B, ν), with finite ν(B),
we have α∗(M) ≤ α̃ ν(B).

What is the largest value of α∗(Mn) as we vary over all Mn of dimension n? We do
not know the answer to this question. Let us assume that ν(B) < ∞. Then among all
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subspaces M1 of dimension 1, the largest α∗(M1) is (1/2) ν(B), and it is attained if
M1 is spanned by a function m̃ such that |m̃| is a constant function. Indeed m∗(t) = 0
for all t ≥ ν(B), and if |||m|||α ≤ (1/2)‖m‖1, then α ≤ (1/2) ν(B) with equality if and
only if |m| is a constant function. What can be said when Mn is of dimension n > 1?
Example 20 shows that

sup
{
α∗(Mn) : dimMn = n

} ≥ α̃ ν(B).

In fact, strict inequality holds in the above, as is verified in this next example:

Example 21 (Linear Functions on the Sphere) Let ‖ · ‖2 denote the Euclidean norm
on R

n, and let Sn−1 = {x : ‖x‖2 = 1} denote the unit sphere. For n > 1, let Mn denote
the n-dimensional linear space of functions {〈x, a〉} restricted to Sn−1. That is, the
elements of Mn are the linear functions ma(·) = 〈·, a〉 for a ∈ R

n.

We consider L1(Sn−1, νn) equipped with the normalized Lebesgue measure νn.
The rotation invariance of νn implies that if ‖a1‖2 = ‖a2‖2, then ma1 and ma2 have
the same distribution function. Hence, in particular, they have the same norm in
L1(Sn−1, νn) and the same α-norms. Thus, in order to compute α∗(Mn), it suffices
to compute what happens with m = me1 , where e1 = (1,0, . . . ,0); i.e.,

α∗(Mn) = νn

{
x : ∣∣〈x, e1〉

∣∣ > βn

}
,

where βn > 0 is defined by the equation∫
|〈x,e1〉|>βn

∣∣〈x, e1〉
∣∣dνn = 1

2

∫
Sn−1

∣∣〈x, e1〉
∣∣dνn.

The surface area of Sn−1 is given by

In = 2πn/2

Γ (n/2)
.

If θ is the angle between a point x ∈ Sn−1 and the hyperplane spanned by e2, . . . , en,
then we have

In = In−1

∫ π/2

−π/2
cosn−2 θ dθ,

for n = 2,3, . . . , and thus,
∫

Sn−1

∣∣〈x, e1〉
∣∣dνn = 2In−1

In

∫ π/2

0
sin θ cosn−2 θ dθ = −2In−1

(n − 1)In

cosn−1 θ

∣∣∣∣
π/2

0

= 2In−1

(n − 1)In

,

while∫
|〈x,e1〉|>βn

∣∣〈x, e1〉
∣∣dνn = 2In−1

In

∫ π/2

βn

sin θ cosn−2 θ dθ = 2In−1

(n − 1)In

cosn−1 βn.

Thus, βn is explicitly given by

cosn−1 βn = 1

2
.
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We also have the following asymptotics for βn. From Taylor’s theorem, cosx =
1 − x2

2 + O(x4) and (1/2)x = 1 + x ln 1
2 + O(x2), and therefore,

1 − β2
n

2
+ O

(
β4

n

) = cosβn =
(

1

2

) 1
n−1 = 1 + 1

n − 1
ln

1

2
+ O

(
n−2).

Solving, we obtain

βn =
√

2 ln 2

n − 1
+ O

(
n−1).

We can precisely compute βn and α∗(Mn) in the cases n = 2 and n = 3. For
n = 2, we have β2 = π/3 and α∗(M2) = 1/3, while for n = 3, we have β3 = π/4 and
α∗(M3) = (

√
2 − 1)/

√
2 ≈ 0.293.

In the next result, we prove that {βn} is a monotone decreasing sequence tending
to zero, while the {α∗(Mn)} monotonically decrease to α̃, where α̃ is the value from
the Gaussian space (see the previous Example 20).

Theorem 21 Let βn and α∗(Mn) be as above. Then

(i) {βn} is a monotone decreasing sequence tending to zero.
(ii) {α∗(Mn)} is a monotone decreasing sequence.

(iii) limn→∞ α∗(Mn) = α̃.

Proof (i) The montonicity of the {βn} follows from the fact that since cosn−1 βn =
cosn βn+1 = 1

2 , then cosn βn < cosn βn+1. As βn,βn+1 ∈ (0,π/2), we have βn >

βn+1.
(ii) We have that

α∗(Mn) = 2
∫ π/2
βn

cosn−2 θ dθ

2
∫ π/2

0 cosn−2 θ dθ
,

while

cosn−1 βn = 1

2
.

Substitute t = cosn−1 θ to obtain d t = −(n − 1) cosn−2 θ sin θ dθ . Since sin θ =√
1 − cos2 θ , we obtain

− 1

n − 1

dt√
1 − t2/(n−1)

= cosn−2 θ dθ.

Thus,
∫ π/2

βn

cosn−2 θ dθ = 1

n − 1

∫ 1/2

0

dt√
1 − t2/(n−1)

,

while ∫ π/2

0
cosn−2 θ dθ = 1

n − 1

∫ 1

0

dt√
1 − t2/(n−1)

.
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We therefore wish to prove that
∫ 1/2

0
dt√

1−t2/(n−1)∫ 1
0

dt√
1−t2/(n−1)

>

∫ 1/2
0

dt√
1−t2/n∫ 1

0
dt√

1−t2/n

.

We claim that ∫ c

0
dt√

1−t2/(n−1)∫ 1
0

dt√
1−t2/(n−1)

>

∫ c

0
dt√

1−t2/n∫ 1
0

dt√
1−t2/n

for every c ∈ (0,1); i.e.,∫ c

0

dt√
1 − t2/(n−1)

> A

∫ c

0

dt√
1 − t2/n

,

where the positive constant A is such that equality holds for c = 1.
To prove this, it suffices to prove that

√
1 − t2/n

√
1 − t2/(n−1)

is decreasing on (0,1); i.e.,

1 − t2/n

1 − t2/(n−1)

is decreasing on (0,1).
Set s = t2/n(n−1). Thus, t2/n = sn−1 and t2/(n−1) = sn, and we wish to show that

1 − sn−1

1 − sn

is decreasing on (0,1). Differentiating, this is then equivalent to

−(n − 1)sn−2(1 − sn
) + (

1 − sn−1)nsn−1 < 0,

which can be rewritten as

s <
n − 1

n
+ 1

n
sn,

which, in turn, is easily proven.
(iii) To show the desired convergence, write

α∗(Mn) =
∫ π/2
βn

cosn−2 θ dθ∫ π/2
0 cosn−2 θ dθ

=
∫ π

√
n−2/2

βn

√
n−2

cosn−2(t/
√

n − 2) dt

∫ π
√

n−2/2
0 cosn−2(t/

√
n − 2) dt

=
∫ ∞
βn

√
n−2 fn(t) dt∫ ∞

0 fn(t) dt
,

where t = (
√

n − 2) θ and where fn(t) = cosn−2(t/
√

n − 2) for 0 ≤ t ≤ π
√

n − 2/2
and 0 for t > π

√
n − 2/2.



430 Constr Approx (2012) 36:399–431

From the asymptotics for βn, we have

lim
n→∞βn

√
n − 2 = lim

n→∞

(√
2 ln 2

n − 1
+ O

(
n−1))√

n − 2 = √
2 ln 2.

We also note that 0 ≤ fn(t) ≤ e−t2/2 (because cosx ≤ e−x2/2 for x ∈ [0,π/2]),
and that

0 ≤
(

1 − 1

2

(
t/

√
n − 2

)2
)n−2

≤ fn(t)

when 0 ≤ t/
√

n − 2 ≤ √
2 (because 0 ≤ 1 − x2/2 ≤ cosx for x ∈ [0,

√
2]).

It follows from these inequalities that fn(t) → e−t2/2 pointwise, and since e−t2/2

is integrable and 0 ≤ fn(t) ≤ e−t2/2, Lebesgue’s dominated convergence theorem
gives

lim
n→∞α∗(Mn) =

∫ ∞√
2 ln 2 e−t2/2 dt∫ ∞
0 e−t2/2 dt

= α̃. �

Remark The above is an example of the known fact (usually attributed to Maxwell)
that for a fixed k (here we have k = 1), the projections of the uniform measures on√

n − 1Sn−1 ⊂ R
n on R

k converge, as n → ∞, to the standard Gaussian measure
on R

k .

References

1. Amir, D., Ziegler, Z.: Polynomials of extremal Lp-norm on the L∞-unit sphere. J. Approx. Theory
18, 86–98 (1976)

2. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)
3. Benyamini, Y., Lindenstrauss, J.: Geometric Nonlinear Functional Analysis. Am. Math. Soc. Collo-

quium Publications, vol. 48. Am. Math. Soc., Providence (2000)
4. Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics,

vol. 161. Springer, New York (1995)
5. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren, vol. 303. Springer, Berlin

(1993)
6. Ditzian, Z., Tikhonov, S.: Ul’yanov and Nikol’skii-type inequalities. J. Approx. Theory 133, 100–133

(2005)
7. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. Interscience, New York (1958)
8. Elad, M.: Sparse and Redundant Representations—From Theory to Applications in Signal and Image

Processing. Springer, New York (2010)
9. Erdélyi, T.: Markov-Nikolskii type inequalities for exponential sums on finite intervals. Adv. Math.

208, 135–146 (2007)
10. Gorbachev, D.V.: An integral problem of Konyagin and the (C,L)-constants of Nikolskii. Proc.

Steklov Inst. Math., Funct. Theory, Suppl. 2, S117–S138 (2005)
11. Ho, T.K.: An inequality for algebraic polynomials, and the dependence between the best polynomial

approximations E(f )Lp and E(f )Lq of functions f (x) ∈ Lp . Acta Math. Acad. Sci. Hung. 27,
141–147 (1976)

12. Ibragimov, I.I.: Extremal problems in the class of trigonometric polynomials. Dokl. Akad. Nauk SSSR
121, 415–417 (1958) (Russian)

13. James, R.C.: Orthogonality and linear functionals in normed linear spaces. Trans. Am. Math. Soc. 61,
265–292 (1947)

14. Jackson, D.: Certain problems of closest approximation. Bull. Am. Math. Soc. 39, 889–906 (1933)



Constr Approx (2012) 36:399–431 431

15. Kadec, M., Pelczynski, A.: Bases, lacunary sequences and complemented subspaces in the spaces Lp .
Studia Math. 21, 161–176 (1962)

16. Kripke, B.R., Rivlin, T.J.: Approximation in the metric of L1(X,μ). Trans. Am. Math. Soc. 119,
101–122 (1965)

17. Kroó, A.: On Remez-type inequalities for polynomials in R
m and C

m. Anal. Math. 27, 55–70 (2001)
18. Kroó, A., Pinkus, A.: Strong uniqueness. Surv. Approx. Theory 5, 1–91 (2010)
19. Kroó, A., Schmidt, D.: Some extremal problems for multivariate polynomials on convex bodies. J. Ap-

prox. Theory 90, 415–434 (1997)
20. Kroó, A., Saff, E.B., Yattselev, M.: A Remez-type theorem for homogeneous polynomials. J. Lond.

Math. Soc. 73, 783–796 (2006)
21. Lubinsky, D.S., Saff, E.B.: Markov–Bernstein and Nikolskii inequalities, and Christoffel functions

for exponential weights on (−1,1). SIAM J. Math. Anal. 24, 528–556 (1993)
22. Mhaskar, H.N.: Weighted analogues of Nikolskii-type inequalities and their applications. In: Confer-

ence on Harmonic Analysis in Honor of Antoni Zygmund. Wadsworth Math. Ser., vol. II, pp. 783–801.
Wadsworth, Belmont (1983)

23. Milovanović, G.V., Mitrinović, D.S., Rassias, Th.M.: Topics in Polynomials: Extremal Problems, In-
equalities, Zeros. World Scientific, Singapore (1994)

24. Mthembu, T.Z.: Bernstein and Nikol’skii inequalities for Erdős weights. J. Approx. Theory 75, 214–
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