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ABSTRACT 

Every nonsingular totally positive m-banded matrix is shown to be the product of 
m totally positive one-banded matrices and, therefore, the limit of strictly m-banded 
totally positive matrices. This result is then extended to (bi)infinite m-banded totally 
positive matrices with linearly independent rows and columns. In the process, such 
matrices are shown to possess at least one diagonal whose principal sections are all 
nonzero. As a consequence, such matrices are seen to be approximable by strictly 
m-banded totally positive ones. 

1. INTRODUCTION 

In this paper, we prove the result, needed in [l], that a totally positive 
biinfinite band matrix is the limit of “strictly banded” totally positive matrices 
of the same band type. But the tool developed for the proof, viz., the 
factorization of such matrices into “one-banded” totally positive matrices, is 
of independent and, perhaps, greater interest. 

We came to consider such factorizations because of the recent paper by 
Cavaretta, Dahmen, Micchelli, and Smith [3] in which such a factorization is 
derived for strictly banded totally positive matrices. But we were unable to 
adapt their arguments, which involve limits of ratios of entries in a certain 
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matrix inverse, to our situation (in which we have neither invertibility nor 
strict bandedness), and ended up constructing the needed factors by the more 
familiar device of elimination instead. The factorization is first established for 
finite matrices and is then extended to biinfinite matrices by a limiting 
argument. For this, we found it necessary to first prove that a totally positive 
matrix with linearly independent rows and columns has at least one diagonal 
with the property that alI square finite sections which are principal for that 
diagonal are nonsingular. 

2. BANDEDNESS 

The rth diagonal or band of a matrix A is, by definition, the sequence 
(A( i, i + r )). As in [2], we call a matrix A m-banded if all nonzero entries of 
A can be found in at most m + 1 consecutive bands. Explicitly, the matrix A is 
m-banded if 

for some 1, A(i+Z, j)#O implies iGjGi+m. 

If both I and m - I are nonnegative, then the m + 1 nontrivial bands include 
the “main diagonal” or zeroth band, with 2 bands to the left of it and 
T: =nr - I bands to the right of it. In this situation, we will at times call such a 
matrix more explicitly (1, r )-banded. 

We call a band matrix strictly banded if the leftmost and the rightmost 
nontrivial band contain no zero entries. Among banded matrices, the strictly 
banded ones are particularly important and easier to treat, since they corre- 
spond to rwndegenerate difference operators. 

3. TOTAL POSITIVITY 

A matrix is said to be totally positive (or TP) in case all its minors are 
nonnegative. 

We use the abbreviation 

:=(A($>i,));=, :=, 
for the sX t matrix which has its (p, v)-entry equal to A($, i,). Further, if Z 
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and 1 are index sets, then 

A1,,:=*[;]:=A[ ;- j:] 

withi r,. . . ,i, and jr.. *it the elements of I and I, respectively, in increasing 
order. Occasionally, we will use the additional abbreviation 

A[Z]:=A ; . [I 
Finally, in case 111 = 14, re pl acing the square brackets by round brackets gets 
us from the matrix to its determinant: 

A( ::: ) :=detA[ 1:: 1. 

We will make repeated use of 

SYLVESTER'S DETERMINANT IDENTITY (SDI). ZfA(i)#O ad B is the 

matrix obtained from A by 

B(i, j):= uZ2 (i, i) E(\Z)X (\I), 

then 

The submatrix A,, , is called the pivot block, since the identity is proved 
by observing that B is the Schur complement of A,, ,, i.e., the interesting part 
of what is left in rows \Z and columns \I after rows Z have been used to 
eliminate variables J from the other rows; see, e.g., Gantmacher [5; p. 311 or 
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Karlin [7; p. 31. In particular, 

COROLLARY 1. rank A [~:~~]=(Z\+rankB[~:] (forZ’nZ=la=J’nJ). 

COROLLARY 2. B is again TP if A is. 

Another result which may be proven by Sylvester’s determinant identity 
($$ng induction on 1 I); see Gantmacher and Krein [6; p. 1081 or Karlin [7; p. 

is 

HADAMARD’S INEQUALITY. Zf A is TP and I = I' U I” with I’ fl I”= 0, 
then 

A(Z)sA(Z’)A(Z”). 

4. SHADOWS 

In this section, we prove an ancillary result concerning the existence of a 
diagonal in a TP biinfinite matrix which could serve as the main diagonal in a 
triangular factorization, i.e., a diagonal all of whose principal sections are 
nonsingular. 

A zero entry in a TP matrix usually “throws a shadow.” By this we mean 
that usually all entries to the left and below it, or else all entries to the right 

and above it, are also zero. More precisely, call the submatrix A 
iai, 

[ 1 i90 
the 

left shadow of the entry A(&, jo) and, correspondingly, call the submatrix 

A 
iGi, 

[ 1 isio 
the right shadow of A(i,, jO). Then the following lemma is known. 

LEMMAA. ZfAi.sTPandA(i,,j,,)==O,butneitherA(~,j,)norA(i,,,~)is 
zero, then either the left M the right shadow of A(i,, i0) is zero. 

Proof. By assumption, A(&, jl)#O for some ii. If il<jO, then the right 
shadow of A(&, ia) can be seen to be zero as follows. First, for any ici,,, 

= -A(i,, j,)A(i, io)GO, 
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and A(i,, ii)#O implies that A(i, ia)= for all i < i,. Hence there then exists 
i,>i,forwhichA(i,,j,)#O.Butnow,foranyi~i,andf>j,, 

= -A(&, j,)A(i, j)GO, 

and A(i,, ja)#O implies that A(i, j)=O. 
Finally, if instead ji > jO, then the left shadow of A( i,, jo) is similarly seen 

to be zero. n 

As an application for later use, note that a zero in the lower triangular part 
of an invertible TP matrix necessarily throws a lef shadow, since all diagonal 
entries are nonzero, by Hadamard’s inequality. 

More generally, for any section of A, i.e., any submatrix A,,, of A made 
up of consecutive rows and columns of A, we call the submatrix of A having 
A,,, as its upper right comer the left shadow of A,,,, and, correspondingly, 
we call the submatrix having A,,, as its lower left comer the right shadow of 
A r,,. Then we have the following generalization of Lemma A. 

PROPOSITION A. If A is TP and A,,, is a singular section of order n and 

are of fill rank n, then either the left 

REMARK. As in the case n= 1 discussed earlier, we will describe this last 
situation by saying that such a section A,,, “throws a (left or right) shadow.” 

ProoJ By assumption, we can choose (iO, j,,) E Z X 1 so that A ” 
( 1 J’ +0, 

with Z’:=Z\{i,}, J’:=J\{&,}. Th e assumptions imply that the Schur com- 
plement of A,,,r, i.e., the matrix B given by 

A {rl”I’ 

B(r, s):= i 1 {s} ” J 

AI’ ’ ( 1 
all (r,s)~(\wq\l’), 

I 

is again TP (by Corollary 2 of SDI) and vanishes at (iO, j,,), while (by 
Corollary 1 of SDI) neither B(i,, *) nor B( . , jo) is zero. The lemma therefore 
implies that either the left or the right shadow of B( i,, i,,) is zero, and 
Corollary 1 of SD1 then implies that either the left or the right shadow of A,,, 
hasrankn-1. n 
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COROLLARY. Zf A is an infinite Tp matrix, e.g., A E RN XN, then all rows 
and all columns of A are linearly independent if and only if A(Z)>0 for all 
finite ZCN. 

Proof. If A(Z)=0 for some finite ZCN, then Hadamard’s inequality 
would imply the existence of some n E WI for which A(l,. . . , n) =O while 
A(l,..., n- l)#O. The proposition then would imply that either the first n 
rows or else the first n columns of A are linearly dependent. n 

We now state and prove the corresponding result for a biinfinite TP 
matrix. This is somewhat harder, since it is not clear a priori which band is to 
play the role of main diagonal. 

We concentrate on principal sections for a band: A principal section for 
band r is any submatrix of the form A,, I+r, with.Z an interval. In other words, 
such a principal section for band r (1) is square, (2) is made up of consecutive 
rows and columns, and (3) has a piece of band r as its main diagonal. We call 
such a principal section minimally singular if it is singular but contains no 
smaller principal section for the same band which is also singular. Note that, 
by Hadamard’s inequality, every principal section containing a singular one 
for the same band is itself singular. 

THEOREM A. Let A be biinfinite TP, and assume that not all minimally 
singular sections of A throw their shadow in the same direction. Then all rows 
and all columns of A are linearly independent if and only if all principal 
sections for some band are nonsingular, i.e., 

there exists r such that for all internals I, A ==o. 

REMARK. This last condition is, if course, equivalent to having A 

>O for all finite index sets 1. 

Proof. The sufficiency of the condition is obvious. So assume that all 
rows and all columns of A are linearly independent. If every band r has a 
singular principal section, then every band has a minimally singular one, and, 
all rows and all columns being linearly independent, each of these throws a 
shadow, by Proposition A. By assumption, not all of these shadows go in the 
same direction, i.e., there exist bands r and s such that some principal section 
for r throws a shadow to the left while some principal section for s throws a 
shadow to the right. 
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We may assume that 6s. For, if r)s, then, with A, the minimally 
singular r-band section in question, we can pick a minimally singular section 
A, for some band Q with q<s and in the left shadow of A, and such that A, is 
in the right shadow of A,. We claim that such A, must again throw a left 
shadow. For, it throws a shadow by Proposition A, and if this were a right 
shadow, then both A, and A, would have to be of the same rank, hence of the 
same order, and the union of their shadows would contain a strip of 
width 2 order A, and of rank = rank A, -C order A I, thus contradicting the lin- 
ear independence of rows (or columns) of A. 

Further, since every band has a shadow throwing section, we may assume 
that s=r+ 1. More explicitly now, we assume that, for some r, there is La0 
and i such that 

i+r,...,i+r+L 1 
is minimally singular with its left shadow of rank L while, for some R 2 0 and 
some k, 

A .=A k-R,..., k 
Tfl’ k+r+l-R,..., k+r+l 1 

is minimally singular with its right shadow of rank R. 
There are three cases, depending on the relative position of these two 

submatrices. 

Case 1: k-i>max{L, R}. 

i+r i+r+lc 

i 5 
i+X X X X X 

X 
X X 

X 
x x x x x x +k 

t t 

k+r+l--A k+r+l 

‘fLl-r;;Jlll:;;;;in A[ iF**;Y “1 with j =G i + r are linear combinations of the 

,**+, i+r+L, while all columns i with j>k+r are linear 
combinations of the R columns k + r + 1 -R, . . . , k + r, and this holds even if, 
e.g., L =O, since then all columns i with j<i + r are zero themselves. Since 
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i+r+l<k+r+l--R and i+r+LGk+r, all columns are linear combinations 

of the k-i columns i+r+l,..., k+r. We conclude that A it....7 

’ $ 

k has only 

rank k-i, a contradiction to the assumed linear independence of rows. 
Case 2: i+r+L-(k+r+l-R)>max{L,R}. This is treated analo- 

gously. It leads to columns k + r + l- R,. . . ,i + r + L being dependent, 
again a contradiction. This leaves 

Cu.se3: max{k-i,i+L-(k+l-R)}<max{L,R}. In this case i-k 
<l+max{L,R}-(L+R)=l-min{L,R}, andso 

min{L, R} Gk-i<max{L, R}. 

We claim that this contradicts the minimality of the two sections A, and Arfl 
chosen. Assume without loss that LC R. Since then LG k - i<R, the r-band 
section A, lies inside the (larger) (r+ 1)band section A,+ i: 

i+r i+r+L 

1 1 

. . . . . . -k-R 

. . . . . . 

i’ *xxx-. 

.xXx-. 

i+L-+ .xXx-- 

. . . . . . Ck 

t t 
kfrfl--R k+r+l 

. . . . 

. . . . 

SD1 ’ a c3 . . 
0 0 . . 

By the minimality of A,+i, the L-section 

A i,...,i+L-1 
[ i+r+l,...,i+r+L 1 

principal for band r + 1 is nonsingular. In its Schur complement B, the section 
A, appears as a zero which, by assumption, throws a left shadow. But this 
zero appears on the next-tomain diagonal of the submatrix B,,, of B 
corresponding to A,, i, and this implies that det B,,, is the product of two of 
its proper complementary minors. But then, by the singularity of A,+i, and 
hence of B,, 1, some proper principal section of A,+1 must be singular, 
contradicting the minimality of A,+i. H 
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The assumption that there ought to be shadows thrown in both directions 
cannot be omitted, as the following example shows. Let 

B(i,j):= o 
i 

l/(i- j)!, i>i, 

> i<i. 

Then B is TP, and with i, < . * * Ci,, ii < . . . (is, we have 

B ;:‘““I’ 

i. ‘1 ,..*,Is 
>O iff i, a&, all t. 

From B, construct A by deleting every other row. More explicitly, 

A(i,j):=B(2i,j), alli,i. 

Then A is again TP and biinfinite, and its rows and columns are linearly 
independent. But now every band r has singular principal sections; for 
example, A(i, i+r)=O for all i<r. 

5. FACTORIZATION OF A FINITE BAND MATRIX 

THEOREM B. A TP rumsingular (I, r j-banded n X n matrix A can be 
factored as 

A=L(‘, . . . L”,DU(‘) . . . UC’, 

with Ltk’ unitdiagonul (l,O>banded TP, all k, D diagonal TP, and Uck) 
unitdiagonul (0, l>banded TP, all k. 

Proof. We obtain the factorization by the standard device of elimination. 
In the typical step, we have a nonsingular TP (1, r)-banded matrix A with 
zeros already in band - 1 in columns 1,. . . , k - 1: 

k l+k+r 

L 5 
x x x x 
x x x x x 
oxxxxx 

oxxxxx 
Ifk + @XXXXX 

xxxxxx 
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From it, we obtain the matrix Z? by subtracting c times row Z+ k - 1 from row 
Z+ k. Thus B differs from A only in row I+ k, and there only in entries 
k, k+ 1; . ., Z+ k + r- 1, because of the zeros in the other entries in row 
Z+ k- 1. In particular, B is again (1, r >banded, with zeros in band -I in 
columns 1,. . . , k- 1. 

We now choose c so that also B(Z + k, k)=O. If A(Z + k, k)=O, then the 
choice c =O will do. Otherwise A(1 + k, k) #O and then necessarily also 
A(Z+k-l,k)#O [ sinceA(Z+k-l,k)=O would imply that A(Z+k-l,i) 
=O for i> k, hence A(Z + k - 1, =)x0, therefore A could not have full row 
rank]. But then the positive number 

c=A(Z+k, k)/A(Z+k-1, k) 

does the job. 
Note that B = CA, with C the identity matrix except for a -c in position 

(I + k, Z-t k - 1). Since the action of C is undone by adding c times row 
Z+k-1 to row Z+k, it follows that 

A=EB 

with E the identity matrix except for a c in position (Z+ k, Z+ k- 1). 
In order to carry out these steps repeatedly, we need to know 

LEMMA B. B is again TP. 

Proof. Since B differs from A only in row Z+ k, we only need to consider 
minors of B which involve row I+ k. Among these, we only need to consider 
those minors which do not involve row Z+ k - 1, since the others retain 
(nonnegative) value in going from A to B. Thus we must show that 

their 

whenever Z and J are index sets of like cardinahty and Z contains I+ k, but not 
Z+k- 1. Let 

I’:={iEZ:icZ+k}, I”:={iEI:i>Z+k}. 
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and there is nothing to prove unless, as we now assume, 

A z’,z+k-1,Z” >() 
( I 1 ’ 

which implies, by Hadamard’s inequality, that every principal minor of the 
corresponding submatrix is strictly positive. We must then show that 

For this, let, correspondingly, 

J=TU {j} UJ” 

with J’ the lZ’/ smallest, and J” the (I”( largest, elements of _Z. 
We claim that 

This inequality follows by IZ’(-fold application of the inequality 

c+ . i s-l,s+l;,t+l 
1 ( 

C 2,.,s-1,s+1;,t+1 

C ‘;, .,&a+;, .,;+Q a 4’:: .,s,s+2, .,*i+$ 

1 

( 
(*) 

. . . .I t . . . > .> t 
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valid for any TP matrix C, because of the identity 

-c 
( , 

:’ ._y,s+2, :y c ;s ._,S~l,S-(:l, :: t 
)( 

t+l 
, 1 

valid for such matrices. This identity is proved, e.g., in Karhn [7; p. 81. It may 
also be proven by SD1 applied to the (t + 1) X (t f 1) matrix obtained by 
adjoining to the first t + 1 rows and t columns of C the additional column 
(LO,..., O)r, and taking 

as the pivot block. 
Unfortunately, the corresponding argument involving dropping of the last 

few rows and columns reverses the sign in (*) and so provides the irrelevant 
inequality 

Instead, we observe next that 
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This follows from the fact that 

A( “;,:,“‘) = c( “;“) 

) c( l+k--l) 

with the matrix C given by 

hence TP (by SDI), and therefore the ratio is monotone nondecreasing in j for 
i to the left of J”, while the strict positivity of 

implies, via Hadamard’s inequality, that 

and so k<i (recall that 

A( ‘+,-‘)=O- for v(k). 

This leaves us, finally, with the task of showing that 

But that is now obvious since A( i, k) = 0 for i > 1+ k, hence 

A( “;I;I!“) = A( “;“)A(;::) = A( “;“) 
) A( ‘+;-l)A( ;I:) A( ,,,-‘) ’ n 
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We conclude that a nonsingular (I, r)-banded TP matrix A can be fac- 
tored as 

A=@). . . . .E(n-l)B 

with B again TP but only (Z- 1, r)-banded, while for each k, Eck) is the 
identity matrix except for some nonnegative ck in position (I+ k, I+ k- 1). 
But then 

L(l). =E(l). . . . .,I$-l) 

is a (1,Okbanded matrix with unit diagonal and the nonnegative number ck in 
position (1-t k, Z + k - l), k = 1,. . . , n - 1, and zero everywhere else. Conse- 
quently, I,(‘) is (1, O)-banded and TP. 

We conclude that a nonsingular (I, r)-banded TP matrix A can be fac- 
tored as 

A = ,+I. . . . . j-j’)B 

with B a (0, r )-banded TP matrix and each Lck) a TP (1, O)-banded matrix with 
unit diagonal. Applying this last statement to Br and transposing the result 
finishes the proof of Theorem B. n 

Lemma B establishes the following proposition of independent interest. 

PROPOSITION B. Let AER”~” be a TP matrix of full row rank of the 
partitioned form 

with the first column of A,, zero except for possibly nonzero entries in rows 1 
and 2. Then A= LB, with LERnX” and BERnX” again TP and of the 
corresponding form 

1 0 
L= 0 L,, [ 1 and B= 

with L, the identity except for a possibly nonzero entry in column 1 in row 2, 
and the first column of B, zero except for a possibly nonzero entry in row 1. 
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REMARK. A. Whitney’s result [9] corresponds to the special case A,, = 0. 
Repeated application of Proposition B recovers Cryer’s result [4] on factoring 
a nonsingular TP matrix into lower and upper triangular TP matrices. 

6. FACTORIZATION OF A (BI)INFINITE BAND MATRIX 

THEOREM C. A TP (bi)infinite m-banded matrix A whose rows and 
columns are linearly independent can be factored as 

A=R(‘) . . . R(“)D, 

with each RCk) a TP one-banded matrix with maximum entry in each column 
equal to 1, and D a TP diagonal mutrix with O<D(j, j)GmaxiA(i, i), all i. 

Proof. If A is biinfinite, then we know from Theorem A that all principal 
sections for some band of A are nonsingular. Assume without loss of general- 
ity that the zeroth band is such a distinguished band and that A is, more 
explicitly, (1, r >banded. Then we know that 

A,,:=A[-n,...,n] 

is nonsingular. If A is only infinite, A E Iw N XN say, then we know from the 
Corollary to Proposition A that, for all n, 

A,,:=A[l,...,n] 

is nonsingular. 
In either case, Theorem B assures us that A,, has a factorization 

A, =Ljf) . . . L’,“D,u,“). . . u,“’ 
? 

with LLk) unit-diagonal (l,O>banded TP, U,‘k) unit-diagonal (0, l)-banded TP, 
and D,, diagonal TP. We intend to let n go to infinity and therefore must 
consider the possibility that these factors may not be bounded independently 
of n. There is no such difficulty in case A is strictly banded, the case treated 
earlier in [3], since in that case the finite factors can even be seen to converge 
monotonely. But, without strict bandedness, we must deal with the possible 
unboundedness of the finite factors. 
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For this, define one-banded matrices S(-*),. . ., S(‘) as follows. Starting 
with M(-‘): = 1, define SC-‘) , . . . , f3-l) successively by 

with M(-‘+‘) the diagonal matrix having maxi(M(-k)Lv))(i, i) in its ith 
diagonal position. This number cannot be zero (by induction on k), since 
MC-‘) = 1 and LJlk) is unit-diagonal. It follows that each S(-k) is a (1, OFbanded 
TP matrix with maximum entry 1 in each column, and 

Q... ” g’) =s’-” . . . SC-1)&p) 

Now continue the process, starting with M (l) : = M(“)Dn, getting successively 
S(l), . . . , SC’) by 

with Mckfl) the diagonal matrix having maxi(Mck)U,‘k))(i, i) in its ith posi- 
tion. 

We arrive at the factorization 

A, =s’-“. . . S(-l)s(l) . . . S(‘)M(‘) r : R’,‘) . . . R’,“‘E 
“, 

with each R’,k) one-banded TP and maximum entry 1 in each column, and E, 
a diagonal TP matrix. We claim that 

O<E,(i,j)GmaxA(i,i), dli. 

We know that 

A(i,i)=x ... ~RRc,)(i,i,)R’,2)(il,i2) . ..R’.“)(i,-,,i,)E,(i,,i) 
il lm 

with all summands nonnegative. Further, for at least one choice of i, one of 
the summands is just E,(j, i), since, starting with i, = i, we can pick 
jm_-l,j,,_-2,...,jO=:i in sequence so that R~‘)(ik_r,jk)=l. But then A(j,,j) 
2 E,(i, 9. 

We can now let n go to infinity through a subsequence of N in such a way 
that each of the matrices Ri’) converges entrywise to some (bi)infinite matrix 
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Rck), necessarily one-banded TP with maximum entry 1 in each column, and 
E, likewise converges to some diagonal matrix D satisfying O<D( j, j)< 
max,A(i, j), all j, while 

A = R(l) . . . R(m)D_ 

But then O<D( j, j), all j, since otherwise A(. , j)=O, contradicting the linear 
independence of the columns of A. n 

COROLLARY. Let A be a (bi)infinite TP m-banded matrix whose rows 
and columns are linearly independent. Then A is the limit of strictly 
m-banded (bi)infinite TP matrices, and this limit is uniform (i.e., in norm) if 
A is bounded. 

Proof. Replace each zero entry in the two interesting bands of Rck) 
above by E>O to obtain the strictly one-banded TP matrix Rrk), all k. Then 

At: =R(‘) . . . R;m)D 
E 

is strictly m-banded TP (as a product of strictly banded TP matrices) and 
converges entrywise to A as E - 0. Since the entries of Rck) are bounded by 1 
while those of D are bounded by II A II m, this convergence is obviously 
uniformincase IIA]],<cc. n 

REMARK. The assumption that the rows and columns of A are linearly 
independent is not bothersome in the intended use of this corollary in [l], 
since there A is even boundedly invertible. But it would be nice to know 
whether this assumption is necessary. We note that Metelmann [8] has 
obtained strictly one-banded TP factorizations for finite strictly (1, r)-banded 
TP matrices, and that Cryer [4] has obtained one-banded TP factorizations for 
arbitrary finite TP matrices. But the procedure given by Cryer may produce 
more than m l-banded factors unless the matrix is strictly m-banded. 
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