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THE EXACT ASYMPTOTIC VALUE FOR THE N-WIDTH
OF SMOOTH FUNCTIONS IN L

Charles A. Micchelli and Allan Pinkus

In this paper we answer a question raised by Chui and
Smith and obtain the exact asymptotic value for the N-width
of the set D_ = {f: ]’Lfllm <1, fe wi [0,1]} where L is
an r-th order totally disconjugate differential operator
and ll- = sup norm on [0,1].

1. Introduction

(r-1)

Let W:[O,l] = {f:f absolutely continuous on [0,1],

£ ¢ 170,113, A e 310,10, 351, 0r, and @D ) =

r
T (G4 A, (0)E(x). The N-width of the set
=

(1) Dp_={f:f ew.[0,1], [|LEl], <1}
(relative to C[0,1]) 1is defined by
@) a,®) = ;;f figz giﬁé |-l 1,
where the infimum is taken over all N-dimensional linear
subspaces XN of C[0,1].
The purpose of this paper is to prove the following

theorem which answers a question raised in Chui and Smith [1].

Let

. 2 +w(ﬂl)k(r+l) ‘
Tt Lo eyt
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THEOREM. For any r 2 1,
r -+
1im N d (D) = e }

Now N''r r N

The proof of the above theorem relies on several results
of [3] which we summarize below.

2. Proof of theorem

Let K(x,y) be the Green's function for the initial
value problem

(L) (%)

£ @) (o)

h(x)

0, i=0,1,...,r-1.

Also, define ko(x),...,k (x) as the unique set of

r=-1

functions in the null space of L satisfying the conditions

kéj)(O) =8, 1,3=0,1,...,r-1.

j é
The Green's function K(x,y) has the property that

0 y X<y 3.
K(X,Y) =

H(x,y), x >y
where for each fixed y, H(x,y) is in the null space of L,
as a function of x.

Thus Dr has the equivalent representation

1 1
ak, () +f K(x,y)h(¥)dy: ||n]], <1,
- 0

r—
(3) po=1]

r
(ao,...,ar_l)e R}

S. Karlin proves in [2] that for every integer s 2 0

there exists a function
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r-1 s P i1
NOMNCEN) bk () + I T kx,ydy
j=0 j=0 €j
0= 8p < By Seres By By =l
which equioscillates r+s+l times, that is,
i+1 .
P (1)) = CGD TRl s i= 1., rbst,
for some points 0 < 1, < T, <...<

1° "2 Trtstl
We will denote by QS the class of all functions which may

< 1 (see also [3]).

be expressed as

r-1 2 . sl
P(x) = ] ak,(x) + I -1? FJ K(x,y)dy
J=0 j=0 n
h|
for some constants (ao,...,ar_l) ¢ RY and points
0= i) < ny <eaa< N, < Nor1 = 1, 2 < s. Then PS has

the following properties:

CITERTRER LI

and

6) min  |£x)| = [[p_|],
1Sj<r+s+l I

where f 1is any function in Dr such that for some points
0 < X, <¢4.%
1

The importance of the function PS rests on the equation

<1, f(xi)f(x ) €0, i=1,...,r+s.

Frts+1 i+1

(7) (@) = IIPN_ [l,, N2,

T
which, along with (5) and (6), was proven in [3].

We are now prepared to prove the theorem.
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PROOF. For every integer N, let

N-1 R it
0 = § (-1 IN R(x,y)dy.

3=0 i
N
We claim that there exists a N in the null space of L
such that for the function HN = GN+VN
r
(8 Lin N Hagll, = e,
. . N N
and there exist N point 0 < Xy Seee< Xy < 1 such that
, T N i+l
(9) 1lim Max N HN(xi) - (-1 e, | =0.

N+ 1<i<N
These facts, together with (5), (6), and (7) imply

N+1
)< dN(Dr) < ||HN_r+1||°° .

Thus we conclude the validity of the theorem.

min IH

(x.
1<i<N+1 N+

Let us then prove (8) and (9). Recall that the r-th

Euler polynomial is defined by the relation

2xr

o1 x € R.

Er(x+1) + Er(x) =
Here we have normalized Er so that Egr)(x) = 1. We per-
form the usual surgery on Er and define E; by

Er(x) = Er(x) s x e [0,1]
(10) _ _

Er(x+l) = -Er(x), x € R.
It is evident that we may express GN as

1 Y 4 =
Gy(x = = (— E () K(x,y)dy.
N 0 dy

Our next step is to integrate the above expression by parts.

r .
For any f ¢ Ww[O,l], there exists constants co,cl,...,cr_l

such that
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r-1
J'l £ (IR = £ - ] ek, (0 +f( I(x, ) E(y) dy
0 j=0 1 0
where
ra"
J(an) = (_1) ”'_I—_K(X’Y)s y < X.
3y
Applying this identity to GN(x) it follows that there exists

N in the null space of L such that

H!H

X .
Gy (x) = E_(Nx) = v (%) +§1l; J'O J(X,Y)Er(Ny)dY-

N

We define HN = GN + vy From (10) we note that (8) and (9)

will follow provided that

(11 HErH°° =e

r

and

(12) 1im max lf( J(x,y)E_(Ny)dy| = 0.
N+e 0sx<l 40 t

The expression (11) for the L -norm of Er is well~known.
It is easily deduced from the Fourier series expansion of
ei“XEr(x) and the fact that

~ |Er(%)[ ,» T even
HE ], =
lEr(O)' , T odd

Thus it remains to verify (12).

Let M be an integer. Divide [0,1] into M equal pieces,

Ii = %, iﬁl], i=0,1,...,M-1. Let gi(y) be the charac-

teristic function of the interval Ii and define

M-1 .
S (x,y) = z J(x,3)g, (y). Then lim ||J-S ]lw = 0, where
M i=0 MO Moo M

||-H°° denotes the L -norm on [0,1] x [0,1]. Now, for any
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x e [0,1]

lr I(x,9)E_ (Ny)dy|
0

l — —
< HJ-SMIIme B o el lal |, max [} F,0mel.
i

O<isM+1

However, | II fr(Ny)dy|S %J’ |Er(y) |dy for all i=0,1,...,M-1.
i 0

Thus

_ 1
lim max |r J(x,y)Er(Ny)dyI < | |J-SM| |°°f lEr(y) |dy.
0 0

N+  0sx<1
Letting M> we obtain (12) and thus the proof is complete.
REMARK. We conjecture that the above theorem remains valid

for any r-th order differential operator
r-1

3
a,D
j=0

L=0D"+

Our proof, however, requires the upper and lower bounds given

by (5) and (6) which were proven in [3] only for differential

operators L allowing a global factorization into real linear
factors.
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