
Numer. Math. 24, 163--175 (1975) 
�9 by Springer-Verlag t975 
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Abstract. The asymptotic  limit of minimum norm quadrature formulae for some 
Hilbert spaces of functions regular and analytic in a domain B is studied, as B expands. 

1. Introduction 

Let  B be a complex domain such t ha t  ~E\B contains an interior. D (B) is 
the  separable  Hi lber t  space defined by  D (B)----{/: / regular analyt ic  in B, t[/[[B = 
(ffBI/[~ dx  dy)~ < oo}. Consider the collection of quadra ture  formulae (q.f) R 
expressed b y  

b k /zl 

R / =  f / (x )  w(x) dx  - -  E =~o ao'/~il (~h), (tA) 
a i = 1  j =  

where 

1) 
2) 
3) 
4) 
5) 
Let  

[a, b] is a real finite interval  in B (assume a > 0 in all examples),  

a ~71 < . . .  <~Tk <-b, 

aiiEC, 
w(x)eC [a, b], w(x) >O, x [a, b], 

k ~,i=1 (#i + t) ~ n ,  (n fixed throughout  the  paper).  

IIRll, = sup IR/I 
1~DIB~ II/IIB 

To each a = (aa0 . . . . .  al,,, a2o . . . . .  ak,~) and r / =  (~h . . . . .  ~Tk) sat isfying the above 
conditions, (k, {/zi} ~ allowed to v a r y  within the above bounds) there is associated 
a quadra tu re  formula  (thru the series pa r t  of (1 .t)).  Let  K = inf 11R,,, ~ liB. There  

ap t/ 

exists a q.f. in this class which is called the min imum norm q.f. and denoted by  
R ~  N which a t ta ins  the above inf imum (Theorem 2.t). 

Minimum norm q.f. have  been studied b y  Barnhill  [ t -3] ,  Barnhil l  and 
Wixom [4], Richter  [12], Valentin [t3], Davis [6], and others. We are con- 
cerned wi th  the  a sympto t i c  l imit  of the  min imum norm q.f. as B grows to  all 
of 112. Valent in  [t3] and Barnhill  [3], considered the circle, and ellipse with foci 
a t  q - t ,  respectively.  With  the usual paramet f iza t ion  of these domains,  they  
proved  tha t  as the circle, and ellipse with Ioci a t  ~ t extend to all of I/2, the  nodes 
and  coefficients of the min imum norm q.f. converge to the nodes and coefficients 
of the Ganssian q.f. defined with respect to  {xi}~__no t. 

* This work is par t  of the author 's  doctoral thesis under the supervision of Professor 
S. Karlin at  the Weizmann Insti tute of Science, Rechovot, Israel. 



t 64 A. Pinkus 

We show that  for any domain B which grows in a radial-like manner to cover 
all of r  the above result holds (Theorems 3.t and 3.2). If we consider the L p 
norm, 2 ~ p  ~ oo, i.e., 

Iml IIRIIB.p = s u p  - - .  

ICD,(B~ IItl~,p 

then these same conclusions prevail (Theorems 3.3 and 3.4). 

Gaussian quadrature formulae may be defined with respect to any Tchebycheff 
(T) system on [a, b] (see Karlin and Studden [t0]). That is, for any T-system 
{u,(x)}~; 1 on [a, b], there exists a unique set of distinct nodes {~3L1 in (a, b), 
and positive coefficients {ai}~_ 1 such that 

" 

fuAx)w(x)dx- i = o ,  t . . . . .  2 n - t .  
a f ; = l  

(The uniqueness is with respect to all possible nodes and coefficients such that  
~,~=1(/,i+t) ~ n . )  For an unbounded domain B which does not contain some 
circle centered at 0, but  which does contain the exterior of some other circle, we 
obtain the result that  as B expands towards 0, in a radial-like manner, the 
minimum norm q.f. converges to the Gaussian q.f. with respect to the T-system 
{ , ~2n+1 
~-J~-2 (Theorem 4.t). 

Of some interest is the example of the annulus where the inner radius tends 
to zero while the outer radius converges to infinity. Here, the result depends 
upon the ratio of the rates at which the radii tend to zero and infinity. Except 
for certain degenerate cases, the minimum norm q.f. converges to the Gaussian 
q.f. defined with respect to r~k+2 , -1  for an appropriate k------2n, - - t  

I ~ ,  5 i = k  , �9 �9 � 9  

(Theorem 5.1). 
In the above three cases, convelgence was to some Gaussian q.f. defined with 

respect to a subset of the ordinary powers. This need not occur. As illustration, 
consider the following example. 

Let  B(r )  ={z:  z = x  + i y ,  - - r  < x  < oo, - - ~ < y < ~ }  and 

(B (r)) = {t: / regular analytic in B (r), E 

[]/[]B(0= ] ] ] * d x d y  < 0 %  and / ( z ) =  a , , e - ' *  on B(r )  . 
ra--1 

As r ~ 0% the minimum norm q.f. converges to the Gaussian q.f. with respect to 
the T-system {e-m*}~n=l (Theorem 6A). Results analogous to those obtained 
for the annulus hold where we consider 

B (rx, r,) = {z: z = x + i y ,  --  r,. < x < r x, --  ~ < y < ~} and let r 1 and r,  tend 
to infinity (Theorem 6.2). 

Although we consider quadrature formulae with variable knots, the methods 
employed may be applied to other problems. Some of these are outlined in 
Section 7. 
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2. Theorems on Existence and Convergence 

In what follows, we shall assume, unless otherwise stated, that  

Let Q denote the class of quadrature formulae (q.f.) determined by (IA) (recall 
that  {/*,}~-1 and k are free to vary under the restriction ~,~=1 (/~, + t ) ~ n ) .  

Theorem 2.1. Under the above conditions and assuming ~ \ B  has an interior, 
there exists an R~B N ~ Q satis/ying H R ~  N[]8 = i~f O H R [[~. 

Proo/. The proof of the theorem utihzes methods which are now standard in 
approximation theory (see Hobby and Rice [8]). We use the fact that because 

]]Rll B = sup j R t ~  and since for 111118 < i, [a, b] (B,  11 g) (x)] is uniformly bounded 
/eocB) 11/118 = 

on [a, b] by a constant depending solely on d (0B, [a, b]) > 0, it follows that 
I]R]IB < cr for {a,i}~ ~' finite. 

Remark 2.1. If B is a simply connected bounded domain, symmetric with 
respect to the real line, Karlin [t4], has shown the existence of an R* with n 
distinct simple knots such that 

inf R n [IR*IIB =RE011 II" 

Remark 2.2. For the subspaces of D (B) to be considered in the following 
sections, Theorem 2.t is maintained. 

M N  (x)},=o We now prove that  if ]RBc,I(U,)],~-~O, i-----0, i . . . . .  2 n - - t ,  where {u, , , -1  

is an extended complete Tchebycheff (ECT) system on [a, b] (see [10]), then the 
M N  coefficients and nodes of RB(,} converge to the coefficients and nodes of R G, the 

Gaussian quadrature formula defined with respect to {u i ( x ) } ~  1 and the weight 
function w (x). 

Before entering into the proof of this fact, it is worth noting that the restric- 
tion w ( x ) >  O, x E [a, b] and w(x)EC [a, b] is not a necessary condition for the 
existence of a Gaussian quadrature formula with respect to a Tchebycheff system 
u ~,,,-x [a, b]. Necessary conditions may be found in Karlin and Studden ifi=o on 

[10, p. 137]. We will, without loss of generality, drop all references to w(x)  and 
the reader should understand that the statements hold for any w (x) of the above 
f o r m .  

Theorem 2.2. Assume B(r)  satisfies the assumptions o] Theorem 2.1 /or each 
r < oo. I1 Mn IR~t,~(u,)l-~o, i=o,  a . . . . .  2 n - - t ,  where {Ui(X)}~; 1 is an E C T -  
system on [a, hi, then the coe]/icients and nodes o / the  m in imum norm ( M N )  q.]. 
associated with B (r) converge to the coe/ficients and nodes o] the Gaussian q.]. 

f~ [X'~lls--1 defined with respect to t ~ tsi=0 �9 

Proo/. Let 

L,  RBI,~(I) = f t (x)dx--  c,.(r)llJl(~, (r)) 

t2 Numer. Math., Bd. 24 
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where RM~ is a M N  q.f. for B (r), and where we assume, wi thout  loss of generality, 
tha t  ~.~{__~ ( / ~ , ( r ) + t ) : n  for all r, (cii(r) m a y  be zero), and/z,(r)  : / u , ,  i = t  . . . . .  
l(r) ~--l (i.e., choose a subsequence of this form). Also assume tha t  

m ( r ) , ~ o f i i ,  i : t  . . . . .  l; i = 1  . . . . .  s, 

where 

a ~ l < - . ' < ~ , ~ b ,  v j :  ~. ~u i, ( v i + t ) = n  �9 

We show tha t  a contradiction ensues if 

1) vi are not  all zero, i.e. s : ~ n  or 

2) a =~1 or  ~,-----b. 

Let  u (t) be the polynomial  which 

a) has a zero of mult ipl ici ty v~ + t at  ~ if vi odd or if ~i = a or b; 

b) has a zero of mult ipl ici ty vi + 2 at  ~i if vi even. 

If  either t) or 2) hold, then there exists a polynomial  u(t) ~ - 1  
__ X ~ Z n - - l  a Z - -  ~ satisfying the above such tha t  u(t) :>0, rE[a, b], a n d / , i = 0  ~-- �9 

Now 
2 n - - 1  

M N  
I RB(,) (U, (t))]-~oo0. IRBI,)(u(t))] ~ ~. [a,] MN 

~ 0  

However  

/ o:,>,,I>o. 
(This holds since the coefficients cij(r ) must  be bounded. A simple a rgument  of 
the above type  proves this fact.) Thus, a contradict ion ensues unless a < ~1 < " "  < 
~, < b and vi ~ 0, i ----- 1 . . . . .  n. Let  c i be the coefficient associated with each ~i, 
i = t . . . . .  n. The quadrature  formula with nodes ~i and coefficients ci, i = t . . . . .  n 
satisfies R(ui) ~ 0 ,  j = 0 ,  t . . . . .  2n  - -1 .  Thus ~ and e are the nodes and coef- 
ficients of the Gaussian q.f. associated with the ECT-system {u~(t)}0 **-1. 

Since this limit is independent  of the subsequence, the theorem is proven. 
The fact  tha t  ~N RBr is not uniquely defined for each r is not  crucial. Q.E.D. 

3. Bounded Domains  and Radial-Like Limits 

Let  B be any  bounded domain and assume, wi thout  loss of generality, t ha t  
0EB.  

Theorem 3.1. Let a (r) be a non-decreasing real-valued continuous [unction o/ r 
on [t, oo) /or  which a (1) = t, and l i m a  (r) : oo. Set 

f'--~ O0 

MN be defined as above with and let RB(r) 
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Then the coellicients and nodes o~ RM~ converge to the coe/ficients and nodes o/ 
the Gaussian q./. defined with respect to {xi}~b -1. 

Proo/. We assume without  loss of generali ty tha t  [a, b] ( B  (r), for all r ~ I.  
B y  Theorem 2.2, we must  show tha t  IRg(g(.')l-goo, i - - o ,  t . . . . .  2 n - t .  Let  R a 

denote the Gaussian q.f. defined with respect to {xi}0 2*-x. Since 0EB,  there  exists 
a circle of radius s, center 0, which we denote by  U(s), such tha t  U(s)(= B. Let  

U(sa(r))={z: [z[ <1} .  Thus U(sa(r))<=B(r). Without  loss of generality, sa(r) - 

let s = t .  In the proof of the theorem, we use the following lemma. 

Lemma 3.1. Under the above assumptions, 
2n M N  [a(r)] IIR~(,)IIB(,),,~O- 

Proo/. 

,~ (a(r)),~§ 
is an or thonormal  complete sequence in D ( U (a (r))). Thus 

21 & Ul~l lMc,) )  = R ~ + '  : 

(V- 
s i n c e / ~ ( z  i) ---'--0, i = 0 ,  1 . . . . .  2 n - - 1 .  I t  follows tha t  

since ][Rally(a(,.))< ~ ,  and 

[a(~)]'" ~o [a(r)] ' ' + a  

(a(r))'+')r 

: )r (a(r))-+l 

: )' 
Ca(,))-+' ,~o 

as r ~ oo for m :> 2 n. By  definition 

[[na[[v(a(,i) ----- sup [Ra/[ 
/ ~ D ( v  ( , ( , i ) )  llllluca(,>) 

Since D (B (r)) ( D ( U (a (r))), and for / e D (B (r)), II/II. Ca (,)1 -<- II/II. (.), it follows tha t  

II~ll~c,(,.))~ sup IR~/I 
/~r162 II/11 Bc'~ 

--I1:11~(,) 
M N  -~ IIR,(,,II,(,). 

Thus ' ~ .  M N  Ca(r)] ]]RBc,)IIB(,~,?O. Q.E.D. 
Proo/ o/ Theorem 8.1 (Continued). 1, z . . . . .  z2'~-IED (B). Choose b, such t ha t  

[[ b, z~ [[B ---- t . I t  is easily seen tha t  

bk gk b k z k 
[a(r)]Kg i- eD(B(r)), and ~ B(v)'=t. 

t2" 
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Since 

we have 

It  follows that  

Ea(r) I'"IIR.~.~II.~.,.~0, 

Ca(r)/'" R.~,~ / b~z~ ~l 

MN MN k IRm. ~ (z~)I = I R,c.~ (x)1 .t~0. 
for k = 0 ,  t . . . . .  2 n - - t .  Q.E.D. 

In Theorem 3.t, B (r) grew in a radial manner. We generalize this condition 
in the following theorem. 

Theorem 3.2. Let a(r) and U (s) be de/ined as above. Let t > s > 0  be such that 
U (s) (= B (= U (t). De/ine B (r) to be any domain such that U (s a (r)) (__ B (r) (= U (ta (r)), 
/or all r > 1. Then the results o/Theorem 3.1 hold. 

Proo/. The proof is totally analogous to that  of Theorem 3.t. 

Remark 3.1. The method of proof used in Theorems 3.t and 3.2 is a generali- 
zation of that  used by both Valentin [t3] and Barnhill [3]. The cases which 
they each considered are subsumed by Theorem 3.2. 

Corollary 3.1. Let D (B) be any closed Hilbert subspaee o / D  (B) containing the 
/unctions 1, z . . . . .  z ~n-x, and assume otherwise that the conditions o/ Theorem 3.1 
hold. De/ine 

su-IR(/)I II R II. - -  1~,'.,_ W g -  

etc . . . .  Then the results o/ Theorem 3.1 and Theorem 3.2 hold. 

Proo/. The same as for Theorems 3.1 and 3.2. 

In the foregoing we have considered the problem on the Hilbert space L ~ (B). 
We now extend the above results to L p (B), 2 <-- p <--<_ ~ .  

Let B(r) be as in Theorem 3.t, and let 

(B ( r ) )=  { / : / r egu la r  analytic in B (r), and [[/[[B(,),p = l ~  ]tlpdxdylxlp < oo} D p 

for 2 ~ p < oo. As usual, define 

I IR I l . , . , ,p  = sup Iml  
ICDP(B(r)) ~ ' 

MN " and specify RBIO, p m the analogous manner. 

Theorem 3.3. Under the above conditions, the results o~ Theorem 3.1 hold/or 
the quadrature/ormulae I~MN O < *h "'s(,),~ ~ : r  < co. 

P,oo/. Let m (B) = ff d ~ dy < ~. Then, 
B 

[11[],1,)., = ( ~  [/[~ d x d y ) ' < - - ( f ~  I/I p dxdy)'lP (~,~ d x d  y)P,-P' 

= II/ll,,(,,,p [ l / - ~  a (r)] ~-'/p, 
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by  Holder's inequality. Thus, D~(B(r))(=D~(B(r)) ,  and if Iltl]B(,),p~t, then 

HI I]~1,),* ~ [Vm(B(B) a (r)] 1-*/p. Therefore, 

I1R%1~(,,.~= sup tR~/I 
t~D'(B(,)) II/llar 

IR~II 
> sup 

f~D'(m,)) II/IIB(,), p [ ~  a (r)]l-z/p 

IIR~[Imo, p 
IVY(B) a (r)]l-~/p 

M N  > ltR,(.).~l]~l.).p 
= [I/~(B) a(r)p-~/P 

From Lemma3.1,  [a(r)]2"[]Ra][B(,),~-~ooO. Choose b k such that  ]lbkzk]]~,t,=l. 
Since 

( I t~/p bkzk 
~ ]  ( . ( , )p  -(,),p = t ,  

[a r ]~,-t+~/p 4 ~1# [ bkzk ~l 
() R.5,% t )l,w ~ 

The result follows. Q.E.D. 

For p = ~ ,  set 

11111~(,).~ = sup II(z) l, 
z6B(r) 

while D~176 IIRIlBc,,.~, a n d  ~'~ RB (,), oo are defined analogously. 

Theorem 3.4. The results o] Theorem 3.1 hold/or p ~ co. 

Pro@ The proof is a repetition of Theorem 3-3, where we note that  

IIIIIB(,~.~--< VII,(,,.~ EV m(B) ~,(,)3. Q.E.D. 
Note that  Theorem 3.2 extends to cover the cases considered in Theorems 3-3 

and 3.4. 

4. Unbounded Domains and Radial - -Like  Limits 

In the last section we considered bounded domains with a chosen fixed point, 
which was used as the centre, and radial-like growth. In this section we briefly 
consider the reciprocal problem. 

Let B be any unbounded domain which contains the exterior of some circle 
and such that  d (0, ~ B ) >  0. We shall let B expand towards 0, and prove that  

~ ( ~ t - ~ 0  for k = 2 , 3  . . . .  2 ~ + ~ .  RB(r) ~ x'~/ ,to~ 

{'y Note that  ~-~ k-~,+l  is an ECT-system on [a, b]. 

Theorem 4. I. Let a (r) be a non-increasing real-valued continuous [unction o / r  
on [t, oQ],/or which a( l )  = t ,  and lirnooa(r ) = 0 .  11 

B ( r ) =  z:~(r)  e B  , 



~70  A .  P i n k u s  

and R ~  is de/ined as usual with 

then the coeHicients and nodes o/ MN RBI,) converge to the coeHicients and nodes o] 

the Gaussian q.]. defined with respect to [ xk Jk=2 " 

Proo]. We assume without  loss of generali ty tha t  [a, b]6B(r), for all r ~  t. 

M .  ( ' ) , . ~ o o 0 ,  k =  2 . . . .  2 n + t .  B y  Theorem 2A, it is sufficient to show tha t  R B{,) ~ 

The proof is similar to tha t  of Theorem 3A where we choose a V(s) (= B, where 

V(s)={z:  I z l > s } .  Note  tha t  ~/~ z -  j , = ,  is an or thonormal  complete 

sequence in D (V(s)). The proof then follows in an analogous manner  to Theorem 
3 . t . Q . E . D .  

These results do not  ex tend to L p (B), 2 < p ~ co. However,  an analogue of 
Theorem 3-2 does hold. 

5. The Annulus  

In  this section, we consider the following interesting example. Let  

V (r, R) = { z :  r < Izl < R}, 

and let D ( U (r, R) ) be analogously defined. 

We shall consider the problem of convergence of the M N  q.f. as r~O and 
R ~ ~ .  We state the following well-known proposition. 

Proposition S. 1. {r (z)}~__oo is an orthonormal complete sequence in D ( U (r, R) ), 
where 

r  m I ~ 
----- __ " m - - - - - - - o o ,  .. oo; m ~ = - - I  

V R a n t + z  __~.2ra+l ' " ' 

and 
I I I 

~-a(z) -- 2~ z Vlog R/r 
1 

Let  r = ~ ,  0 < 2 < c o ,  and consider the series {2m+2}~"__-~ 2, and 

{2(2m--2)}~"__,. Combine and  order the two series, and choose the smallest 
2 n -  t terms. Assume tha t  the 2 n -  t st t e rm is s t r ic t ly  less than the 2n th term. 

Let  m l ~ - - 1  be the largest integer such tha t  2 m 1 + 2  is in the set, where 
m a = - -  1 indicates tha t  none of the terms of the first series lie in the set. Similarly, 
let m~. > t be the largest integer such tha t  2 (2m~ --  2) lies in this set, where m2 = t 
indicates t ha t  none of the terms of the second series lie in the set. Thus, m a + m S = 
2n  - - t .  

Let  R, MN RuW-~,R) be definedin the usual manner  and assume [a, b] ( U (R~ -a, R0), 
R 0 finite, a > 0. Then, 

Theorem 5.1. Under the above assumption, the coe/]icients and nodes o] the M N  
q.t.  MN RUCR-~,R) converge, as R---> ~ , to the coe//icients and nodes o] the Gaussian q.l. 
associated with the ECT-system {x~}~.s on [a, b]. 
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Remark 6.1. Note t h a t  k = - - l  is a lways in the  set. The  condi t ion  

m a x  {2m a + 2, 2(2m~ --2)}  < rain{2 (m 1 + t)  + 2 ,  2 ( 2 ( m  2 + 1 )  - -2 )}  

is necessary  in the  theorem.  The cases with equa l i ty  are, in effect, the  b o u n d a r y  
points ,  and  we make  no defini te  s t a t emen t  on the  convergence a t  these values  
of 2. 

Proo/. The analys is  follows the pa t t e rn  of Theorem 3.1. Le t  R~ indica te  the  
Gaussian q.f. wi th  respect  to  the  functions given in the  s t a t emen t  of the  theorem.  
Let  l be any  number  such t ha t  

m a x { 2 m l  + 2, 2 ( 2 m 2 - - 2 ) } < l < r n i n { 2 ( m  x + t ) + 2 ,  2(2(m2 + t ) - -2)} .  

L e m m a  5.1. Under the above assumptions, 

MN ~ R t oo. R IIRucR-~.R~IIucR-~R)--~0 as 
Proot. Since 

G M N  

R IIR~II~cR-~,~)-+0 as for all  R > 0, i t  is sufficient to prove tha t  z ~ ~ R ~ oo. 

1 ~ --_ R t R I1~11~r ~ IR~(~-(~))I ~ 

= R' ,,=~.~+x IR~ (r n + .=_Z_x  IRa a ( r  (z))l 2 

by the definition of R~. For given R 0, IIR~lluc~A~o)< oo. Now, 
gm 

R,[R~ (r ) I2= R, [m+n t I R~ ( (R,,,)+2_ R_a(~,n+~)) , ) 2 

R'IRR'+'--R;-a(~'+~II I-~+tl I ~ /[ ~ 
--~ lR2,n+2_R_a(2n~+~} l ~ _l~a (R],,,+S Roa(,,, ,+,))i][" 

and  for m = m a + t ,  m 1 + 2 . . . . .  0% and m = - -  m~ - -  1, - -  m 2 - -  2 . . . . .  - -  0% 

Rll D*m+s ~ - a { 2 m + 2 ) l  
, - , o  - - ,o  I_ - + 0  a s  R ~ o% 

[R~m+z -- R-~(~,n+2)[ 

Ro fixed. The  l e m m a  follows. Q.E.D. 

R IIRuIR-~ R)llu(~-~,~)-+0 as Proo /o /  Theorem 5.1 (continued). By the above,  ~ MN 2 
R ~ oo. Hence,  ~,~, DUN , ,  I,,V(R_~,R)(C,,(Z))[*-->O as R f  oo, m = - - o %  . . . ,  oo. 

Thus,  for m = O, I . . . . .  m~, 

KV(R-,,R) ~ ~ (R"+'--R-~(''+'))~]I ~ 0  

as R ~ ~o. Since l > 2m~ + 2, this  implies  t ha t  

MN ,~ R ~  oo, IR.,o(~-~l(z )1->0 as 

m = 0, t . . . . .  m a. This  same me thod  applies to m = ~, 2 . . . . .  - -mz.  

Since {x~}~Z_~. is an ECT-sys tem on [a, bJ, a > 0, the  resul t  is ob ta ined  v ia  

app l ica t ion  of Theorem 2.2. Q.E.I) .  
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The above results extend to the L p norms as was the case in Section 3. We 
mention various corollaries, the proofs of which are analogous to the proof of 
the above theorem. 

Corollary S.1. Let D ( U ( R  -~, R)) be any closed subspace o] D ( U ( R  -~, R)) 
containing the ]unctions {~}, k ~ - -m  2 . . . . .  0 . . . . .  m v Then the results o] Theorem 
6.1 hold. 

Corollary5.2. Let O ( U ( R - ~ , R ) ) = { f : !  regular analytic in U ( R - a , R ) ,  
I I I I I~ 'cR-".R)< oo, and t (~)  " " ~'-~, i " =Z._ , , a . z  +Z.__~h.~ .} ,  where (,},_, is an in- 
creasing sequence o] non-ncgative integers (k may be infinite), and {/',}~-i is an 
increasing sequence o] positive integers (l may be infinite). 

Then the M.N.  q.]. on CI (U(R -a, R)) tends as R~ o% to the Gaussian q.]., 
with respect to the ECT-system 

where {i1+1 . . . . .  i , , ,+ t ,2 ( / ' 1 - -1  ) . . . . .  2(/ ' , ,--1)} are the 2n smallest terms in 
{i, + l},k 1~{2(/", - t)}t,=1 and the 2n-th term is strictly less than the 2n + l-st term 
in the sequence. 

6. Hilbert Subspaces and Bounded and Unbounded Rectangles 

The examples have so far dealt with the functions {~}k ~=_~. In the following, 
this is not the case. 

Let B = { z : z = x + i y ,  0 < x < o % - - ~ < y < ~ }  and B(r)----{z:z----x+iy, 
- - r < x <  oo, - - ~ < y < ~ } .  

Let 

E ( B ( r ) ) =  {]: [regular  analytic in B(r), (B(f) l / l~dxdy)  ' 

=ll/il~c,, < oo, and/(z) - . _ i  a,e-'= o n  B(r)}. 
Then, 

Theorem 6.1. Under the above assumptions, the M.N.  q.]. on E (B ( r ) )  tends, 
as r~ oo to the Gaussian q.[. with respect to the ECT-system i~r where 
[a, b] e(o, oo). 

- -  O O  

Proo]. Use the fact that /]/~m e-~'e-~*~ is an orthonormal complete 
t F  ~ jm=x 

sequence in E (B (r)) and the methods of Theorem 3 . t . Q . E . D .  

A similar result holds for B(r) ={z: z = x + i y ,  --  o o < x < r ,  - - ~ < y < ~ }  
and E (/~(r)) defined analogously to E (B (r)). 

The situation corresponding to the annulus is the following. Let 

B(r  t, %)={z :  z----x + i y ,  - -% < x < r  x, - - z < y < ~ }  

where rx, r, > 0, and E (B (r x, %)) is defined analogously to E (B (r)). 
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2n- -1  Let r 2 = ~ r ,  r l -~ r .  Choose the smallest 2n- -4  terms in the set {re}m=1 w 
{2m)~L-~ 1 and assume that  the 2 n -  4-st term is strictly less than the 2n-th term. 
Assume the 2n- -4  terms contain m 1 and ~tm2, but not rr h +4 ,  ;t(m 2 +4).  

Theorem 6.2. Under the above assumptions,  the M . N .  q.]. on E ( B (r, 2r) ) tends, 
as r ~ oo to the Gauss ian q.]. associated with the E C T - s y s t e m  t*e'n*~m'Jm=--m, on [a, b] 
where - -  o o < a < b <  oo. 

Proo/.  Corresponding to past proofs. 

We now list other examples, which are stated without proof. In these examples 
assume, for sake of convenience, that [a, b] <(0, 4). 

I. Let B(r )  ={z: ]z[ < r ,  z=#:--x, x>0}.  

Since this is not a Caratheodory domain (see Markushevich [t 4 ]), it is known 
that {z~}~~ is not a basis for D (B (r)). 

a) Consider the subspace of D (B (r)), C 1 (B (r)) spanned by {zk}~~ . Then the 
limit, as r I' 0% is the Gaussian q.f. associated with ~ , ~ - 1  

I "v S k = O  �9 

b) Consider the subspace of D (B (r)), C ~ (B (r)) spanned by {log z, {z~}~~ 
Then the limit, as r ~ o% is the Gaussian q.f. associated with {log x, {xk}~o2}. 

c) Consider the subspace of D (B (r)), C 3 (B (r)) spanned by {zk-Z/~}~~ 0. Then 
the limit, as r 2 o% is the Gaussian q.f. associated with {x~-X/2}~__~ 1. 

d) Consider the subspace of D (B (r)), C' (B (r)) spanned by 

o , - ,  

Then the limit, as r ~ 0% is the Gaussian quadrature formula associated with 
{ { xk}~=o w { x~-l/2}r~=o) , where  l = m  = n  - -  4 if Y >= n - -  4, and if N < n - -  4 , m = Y 
and l = 2 n - - 2 - - N .  The analogous result holds when considering the subspace 
spanned by {{zk}~v__ o w Szk-Z/2~~176 "t t S k = 0 / "  

�9 ~q~ 
II. Let B (r, l )={z:  [z I < r, z = s e '~ and - - 7  < 0 < 7 '  / a positive integer, 

l >  4}, D (S (r, l ) ) is  spanned by {zk}~~ since B (r, l) is a Caratheodory domain. 
The sets of functions y,,~l+kiao k = 0 ,  4, l - -4  are each orthogonal on t "  J m = O ,  " �9 � 9  

B(r ,  l), i.e., (z ~l+*, z *~+k) =0 ,  m @ n ,  for fixed k = 0 ,  4 . . . . .  l - -4 .  

a) Let C~(Bk(r ,  l)) be the subspace of D ( B ( r ,  l)) spanned by {z~'+k}~=0, 
k fixed. Then the limit, as r 1' 0% is the Gaussian q.f. associated with {x~*+k}~Lo~. 

b) Let C 2 ( B ( r , / ) ;  i0 . . . . .  i,-a) be the subspace of D ( B ( r ,  l)) spanned by 
l - - I  

(3 c-~z+k~i, where at most are of the/'k is infinite, and ]'k = --4 indicates that ~t z f m = O ,  
k ~ O  

the corresponding set is empty. Then the limit, as r ~ o% is the Gaussian q.f. 
l - - 1  

associated with the lowest 2n powers in (3 ;,~l+k~', ( ~  J m - - 0 "  
k = 0  

The results of I and II also extend in the various directions as indicated by 
the corollaries of Section ~. 

7. Related Questions 

In this section we indicate other areas in which the previous analysis is 
applicable. 
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I. Minimum norm Quadrature Formulae with Fixed knots 

Let 
b k v~ 

R / = f  /(x) w ( x ) d x - -  X X a~i/li~Oh), (7.t) 
a 1--1 i=O 

where c=<~h< -.. < ~ 7 ~ d ,  ~7i,/~ fixed, i = l  . . . . .  k, [a, b]=~ [c, d] (c, d finite), and 
~ = l ( p i + t )  = n .  Associated with each quadrature formula of this form there 
exist unique {a, i}~'  such that  Ru,=O,  i----0, t, . . . ,  l, where {u,}~= o is an 
ECT-system on [c, d]. Depending on the choice of {~7i}~=1 and k {,~i},=. 

b 

n - - t  ~l--< ~ (/z~+l) + k - - E - - t ,  

where E counts the ~i for which/~i is odd, or ~ r b). 

We consider the class of quadrature formulae obtained by  allowing the 
coefficients Sa xk m to vary. Analogues to Theorems 2.1 and 2.2 are easily t i i J ~ - i  i--O 
proven, and with this follows the extension to the results of Sections 3-6. 

II .  Minimum Norm Quadrature Formulae with Variable Knots 
o/Fixed Degrees 

Consider the class of q.f. of the form (7.1) where the ~u i are fixed i----t . . . . .  k, 
and each bti is even, but the ~i are permit ted to vary  within [c, d I. Then there 
exist unique 

k k ~t 0 a n d  ._ 

such that  Ru,----0, i = 0  . . . . .  ~.~=t (/~, + t ) + k -  t = p ,  where {ui}~= 0 is an ECT- 
system on [c, d] (see Karlin and Pinkus E9]). All the above theorems hold with 
the obvious changes. 

I I I .  Interpolation 

For the case of the ellipse with loci at J :  t ,  the reader is refered to Barnhil] 
and Wixom [5]. The problem is as follows. Consider z o, z 1 . . . . .  zkEB, where 
z ~ z  i, i , / '=0,  t . . . . .  k. Let R J  be the linear functional defined by  

k 

R , f  =](z0) - -  ~. ~ aij/li)(zi), 
~=z i = 0  

where k {z,},=o, {Pi}L1 are fixed, and ~,Lx (/~, +1)----n. We consider the class of 
linear functionals obtained by  allowing the {a~i } to vary. The results then follow 
those of Sections 2-6. 

In general, any class of remainder formulae 

RI=LI--~aiL~(I), 
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where Lff=l(zi), zieB, L] is a bounded  l inear funct ional  on D(B), and  the a i 
are free to vary,  will satisfy the analysis of Sections 2-6 (see Golomb and  Wein-  
berger [7]). 

The author  wishes to acknowledge his indebtedness,  and  express his appre- 
ciation to Professor S. Karl in,  wi thout  whose guidance this work would not  have 
been possible. 
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