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Asymptotic Minimum Norm Quadrature Formulae
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Abstract. The asymptotic limit of minimum norm quadrature formulae for some
Hilbert spaces of functions regular and analytic in a domain B is studied, as B expands.

1. Introduction
Let B be a complex domain such that (D\B contains an interior. D(B) is
the separable Hilbert space defined by D (B) ={f: { regular analytic in B, ||f|z =

(Jfs|t|2dx dy)t < co}. Consider the collectlon of quadrature formulae (q.f) R
expressed by

Ri=ftwwmas—3 ot (1)
where
1) [a, b] is a real finite interval in B (assume a >0 in all examples),
2) asy<...<m=b,
3) a;;€C,
4) w(x)eCla, b], w(x) >0, x€[a, b],
5) % _1(u;+1) <, (n fixed throughout the paper).
Let " |
/
IRl = o T

To each @ = (ayq, ..., @y, Azg, -+, Giy) a0d §=(1y, ..., 7;) satisfying the above
conditions, (%, {u,}} allowed to vary within the above bounds) there is associated
a quadrature formula (thru the series part of (1.1)). Let K= mf | Ra, lls- There

ex1sts a q.f. in this class which is called the minimum norm qf and denoted by
RY¥Y which attains the above infimum (Theorem 2.1).

Minimum norm q.f. have been studied by Barnhill {1-3], Barnhill and
Wixom [4], Richter [12], Valentin {13], Davis [6], and others. We are con-
cerned with the asymptotic limit of the minimum norm q.f. as B grows to all
of €. Valentin [13] and Barnhill [3], considered the circle, and ellipse with foci
at -1, respectively. With the usual parametrization of these domains, they
proved that as the circle, and ellipse with foci at +1 extend to all of €, the nodes
and coefficients of the minimum norm q.f. converge to the nodes and coefficients
of the Gaussian q.f. defined with respect to {x*};*".

* This work is part of the author’s doctoral thesis under the supervision of Professor
S. Karlin at the Weizmann Institute of Science, Rechovot, Israel.
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We show that for any domain B which grows in a radial-like manner to cover
all of €, the above result holds (Theorems 3.1 and 3.2). If we consider the L?
norm, 2<p < oo, i.e.,

D?(B) = {f: f regular analytic in B, |f|5 , = (f,! |}‘|"dxdy)1/p < oo} and

Ry
R = su —|—-
" le. ferI()B) 15,5

then these same conclusions prevail (Theorems 3.3 and 3.4).

Gaussian quadrature formulae may be defined with respect to any Tchebycheff
(T) system on [a, b] (see Karlin and Studden [10]). That is, for any T-system
{u;(%)}3"5* on [a, b], there exists a unique set of distinct nodes {2, in (a, b),
and positive coefficients {«,}%_, such that

b %
Juj(x)w(x)dx=3F au;(§) [=01,...,2n—1.
a i=1

(The uniqueness is with respect to all possible nodes and coefficients such that
2 1(4;+1) <n.) For an unbounded domain B which does not contain some
circle centered at 0, but which does contain the exterior of some other circle, we
obtain the result that as B expands towards 0, in a radial-like manner, the

minimum norm q.f. converges to the Gaussian q.f. with respect to the T-system
{%}Z:l (Theorem 4.1).

Of some interest is the example of the annulus where the inner radius tends
to zero while the outer radius converges to infinity. Here, the result depends
upon the ratio of the rates at which the radii tend to zero and infinity. Except
for certain degenerate cases, the minimum norm q.f. converges to the Gaussian
q.f. defined with respect to {«*}¥2*~!, for an appropriate k= —2#,..., —1
(Theorem 5.1).

In the above three cases, convergence was to some Gaussian q.f. defined with
respect to a subset of the ordinary powers. This need not occur. As illustration,

consider the following example.
Let B(r) ={z:z2=x+1iy, —r<x< oo, —m<y<m}and

E(B(r)= {f: f regular analytic in B(r),

"f"z;(,):(g(!; ]fl’dx dy)i< oo, and }‘(:f.):»ij1 a,e~™ on B(r)}.

As 74 oo, the minimum norm q.f. converges to the Gaussian q.f. with respect to
the T-system {¢~™*}a*, (Theorem 6.1). Results analogous to those obtained
for the annulus hold where we consider

Bry, 1) ={z:2=x+1y, —r,<x<n, —x<y<am} and let », and 7, tend
to infinity (Theorem 6.2).

Although we consider quadrature formulae with variable knots, the methods
employed may be applied to other problems. Some of these are outlined in
Section 7.
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2. Theorems on Existence and Convergence

In what follows, we shall assume, unless otherwise stated, that

Il = | 2 xay

| and (19 = f] 1E@dxdy.

Let Q denote the class of quadrature formulae (q.f.) determined by (1.1) (recall
that {u;}}_; and % are free to vary under the restriction X% _, (u; +1) <n).

Theorem 2.1. Under the above conditions and assuming ©\B has an interior,
there exists an RYN €Q satisfying | RE" |5 = zlz%fo IR|5.

Proof. The proof of the theorem utilizes methods which are now standard in

approximation theory (see Hobby and Rice [8]). We use the fact that because

|R|s = sup IR and since for Ifls =1, [a, b]<B, |f¥(x)] is uniformly bounded
rep(s) 1l

on [a,b] by a constant depending solely on 4(9B, [a, b]) >0, it follows that
|R|s < oo, for {a, }i4 finite.

Remark 2.1. If B is a simply connected bounded domain, symmetric with
respect to the real line, Karlin [14], has shown the existence of an R* with #
distinct simple knots such that

|R* | = int IRl

Remark 2.2. For the subspaces of D(B) to be considered in the following
sections, Theorem 2.1 is maintained.

We now prove that if |REY) (#;)| >0, §==0,1, ..., 2% —1, where {u;(x)}}25"
is an extended complete Tchebycheff (ECT) system on [a, ] (see [10]), then the
coefficients and nodes of R%’(’f) converge to the coetficients and nodes of RS, the
Gaussian quadrature formula defined with respect to {u;(x)}?*5* and the weight
function w ().

Before entering into the proof of this fact, it is worth noting that the restric-
tion w(x) >0, x€[a, b] and w(x)€C[a, b] is not a necessary condition for the
existence of a Gaussian quadrature formula with respect to a Tchebycheff system
{u;}375* on [a, b]. Necessary conditions may be found in Karlin and Studden
[10, p. 137]. We will, without loss of generality, drop all references to w(x) and
the reader should understand that the statements hold for any w(x) of the above
form.

Theorem 2.2. Assume B(r) satisfies the assumptions of Theorem 2.1 for each
r< oo. If |RYN ()| =0, 1=0,1,...,2n—1, where {u;(x)}25" is an ECT-
system on [a, b), then the coefficients and modes of the minimum norm (MN) q.f.
associated with B(r) converge to the coefficients and nodes of the Gaussian gq.f.
defined with respect to {u,(x)}ins "

Proof. Let , z "
RN () = [ 1) dx— &, 5 sy (019 (1 )

12 Numer. Math., Bd. 24
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where R¥Y Bl is a MN q.f. for B(r), and where we assume, without loss of generality,
that 247 (u;(r) +1) =n for all 7, (c;;(r) may be zero), and p,(r) =p,, i =1, ...,
L(r) =!I (i.e., choose a subsequence of this form). Also assume that

ni(r) => &, i=1,..., L j=1,...,5,

700
where

asE < <é D, V= Z i (',21(1’;4‘1):”)'

ni(r)—>&

We show that a contradiction ensues if

1) », are not all zero, i.e. s=# or

2) a=&oré& =b.

Let u () be the polynomial which

a) has a zero of multiplicity »; 41 at &, if v, odd or if §;=a or b;

b) has a zero of multiplicity »; 42 at &; if »; even.

If either 1) or 2) hold, then there exists a polynomial u(f) =X 7 ‘a,u,(t)
satisfying the above such that #(f) =0, t€[a, b], and X ;"% a?=1.

Now
27n—1

|RED (u)] = Z |a;] | REG) ( .'(t))|,7;0

However

IRB(r) |—> ’f

(This holds since the coefficients c;;(r) must be bounded. A simple argument of
the above type proves this fact.) Thus, a contradiction ensues unless a <& <+ <
&, <b and v;=0, i =1, ..., n Let c; be the coefficient associated with each &,,
i=1, ..., #n. The quadrature formula with nodes &; and coefficients c;, 1 =1, ..., n
satisfies R(w;) =0, §=0,1,...,2n —4. Thus £ and ¢ are the nodes and coef-
ficients of the Gaussian q.f. assoc1ated with the ECT-system {u, (§)}3"*.

Since this limit is independent of the subsequence, the theorem is proven.
The fact that Rﬁ,’(ﬁ’, is not uniquely defined for each r is not crucial. Q.E.D.

3. Bounded Domains and Radial-Like Limits

Let B be any bounded domain and assume, without loss of generality, that
0€B.

Theorem 3.1. Let a(r) be a non-decreasing real-valued continuous function of r
on (1, oo) for which a(1) =1, and lim a(r) = co. Set
7> 00

L eB},

and let RB(,) be defined as above with

1
Moo =| ff 112535
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Then the coefficients and nodes of RY, B(,) converge to the coefficients and nodes of
the Gaussian q.f. defined with respect to {x*}275.

Proof. We assume without loss of generality that [a, b]CB(r), for all » =1.
By Theorem 2.2, we must show that [RB(,) (x‘)[ 'T;’O’ i=0,1,...,2n—1. Let R®

denote the Gaussian q.f. defined with respect to {#*}*~". Since 0 € B, there exists

a circle of radius s, center 0, which we denote by U (s), such that U(s)CB. Let
U(sa(r)):{z:%(lr) §1}. Thus U (sa(r))<B(r). Without loss of generality,
let s =1. In the proof of the theorem, we use the following lemma.

Lemma 3.1. Under the above assumptions

P RES s 72,0

rfoo

{W (o

is an orthonormal complete sequence in D (U (a(r))). Thus

Bt = 3 [ ()2 i)
RG( m“ ——‘zm—m:ﬁ")

since R(z) =0, 1=0, 1, ..., 2n —1. It follows that

Proof.

2

2

[e) 7';— 2
[a(r)]"‘||RG"';‘,(a(,))=[a(r)]‘"m;% RG(V :1 (a(:;;m+1) ,T;O

since || RG]|U(,(,.))< o0, and
_[a(n]»
Ta(@)2m+2 0

as 71 oo for m = 2n. By definition
RG{|
Ry, IR
1Rl en = /ED(U(a(f))) fllv (et
Since D(B(r))<D(U (a(7))), and for feD(B(?)), |flv@m) =Iflse it follows that
Ry o = 1RSH
1B oeen = en (b PO
=| R[5
Z| Rz

Thus [a(r)]**|R¥ |50 72,0- QED.

r}oo

Proof of Theorem 3.1 (Continued). 1, 2, ..., ##*~1eD(B). Choose b, such that
§6,# s =1. It is easily seen that

b, 7% b, z*
“[a_(;k)“‘]zm_ €D(BM). and |rgypet s =

12¢
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Since
NP RES lae) 70
we have

[a ()]

Rsm([ai’ﬁm)

|RE® ()] =| REG) («* IT;,O:
for £=0,1,...,2#—1. QE.D.

In Theorem 3.1, B(r) grew in a radial manner. We generalize this condition
in the following theorem.

T;O.

It follows that

Theorem 3.2, Let a(r) and U (s) be defined as above. Let t >s>0 be such that
U(s)SBCU (t). Define B(#) to be any domain such that U(sa(r ))(B( YU (ta(r)),
for all r = 1. Then the results of Theorem 3.1 hold.
Proof. The proof is totally analogous to that of Theorem 3.1.

Remark 3.1. The method of proof used in Theorems 3.1 and 3.2 is a generali-
zation of that used by both Valentin [13] and Barnhill [3]. The cases which
they each considered are subsumed by Theorem 3.2.

Corollary 3.1. Let 5(3) be any closed Hilbert subspace of D (B) containing the

functions 1, z, ..., 2271 and assume otherwise that the conditions of Theorem 3.1
hold. Define
R
IRl = sup 101
1eD(B)

etc ... . Then the results of Theorem 3.1 and Theorem 3.2 hold.
Proof. The same as for Theorems 3.1 and 3.2.

In the foregoing we have considered the problem on the Hilbert space L2(B).
We now extend the above results to L?(B), 2 <p < oo.

Let B(r) be as in Theorem 3.1, and let

o , p
D?(B(r)) ={f: regular analytic in B, and [fla., = |Bf('{|f| dxdy] < oo}
for 2 <p < oc. As usual, define

IRlap= sup pifll,
' IEDP(B( ) iz,

and specify RY() , in the analogous manner.

Theorem 3.3. Under the above conditions, the results of Theorem 3.1 hold for
the quadrature formulae RYp) p 2P < oo

Proof. Let m(B) = [[dxdy < oo. Then,
B

d 1p -2
"f"a(y),z"‘:(Bj(;{ |f|2dxdy) §(Bf('j)'|f|”dxdy) (Hl("j)’dxdy) )
= “f"B(r),p [Ym(B)a (r))} 2P,
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by Holder’s inequality. Thus, D*(B(r))<D?*(B(r)), and if |f|sy,,=1, then

Hf“B(y), 2 = [|m(B) a(r)*~%?. Therefore,

RG}"
RS i
1R oo, ED‘(B(r)) e

= sup |RG/I
tepr () (B, plVm ()2
| B¢ 5, »
fVm(B) a{r)yjt—2r
“R%{(I:,),QIJB("),;»
= m(Bya(-ur

From Lemma 3.1, [a(r)]*"|R|z,,2 2,7%0- Choose &, such that |b,2*]5 ,=1.

Since
( 1 )2/1’ by 2k
I =1,
alt)]  (a(n)*lB0)p

(aZr))/"R%’ff‘m(%) oo

[a (r)]2n—1+2/p

#fo0 "
The result follows. Q.E.D.
For p = oo, set
Ilag, 0 = sup 1£(2)],
3EB{r)

while D* (B (7)), | Rz, c0r a0d RED) o are defined analogously.
Theorem 3.4. The results of Theorem 3.1 hold for p= oo

Proof. The proof is a repetition of Theorem 3.3, where we note that

11202 =B, 00 (Y (B)a(r)). Q.ED.

Note that Theorem 3.2 extends to cover the cases considered in Theorems 3.3
and 3.4.

4, Unbounded Domains and Radial—Like Limits
In the last section we considered bounded domains with a chosen fixed point,
which was used as the centre, and radial-like growth. In this section we briefly
consider the reciprocal problem.
Let B be any unbounded domain which contains the exterior of some circle
and such that 4(0, B) >0. We shall let B expand towards 0, and prove that

RB{,)( ) TZOO for k=23, ...,2n+1.
2
Note that {ik} is an ECT-system on [a, b].
X ) k21

Theorem 4.1. Let a(r) be a non-increasing real-valued continuous function of r
on [1, oo, for which a(1) =1, and }_i_)ngoa(r) =0. If

B(r)={z:a—f,TeB},
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and RYY is defined as usual with
= 2dxd
Il = Jf 112axdy
then the coefficients and nodes of Rﬁ'{x converge to the coefficients and nodes of

2n41
the Gaussian q.f. defined with respect to {%}k .

b

Proof. We assume without loss of generality that [a, b]€B(r), for all » =1.
By Theorem 2.1, it is sufficient to show that R}, (71,,—) b 0,k=2,...,2n +1.

The proof is similar to that of Theorem 3.1 where we choose a V(s)< B, where
J— 293 e 2]
V(s) ={z: |z| >s}. Note that {V’”_ LI ‘} .
m=

am
sequence in D (V(s)). The proof then follows in an analogous manner to Theorem
3.1. Q.E.D.

These results do not extend to L?(B), 2<p < co. However, an analogue of
Theorem 3.2 does hold.

is an orthonormal complete

5. The Annulus
In this section, we consider the following interesting example. Let
U(r, R)y={z:r<|z| <R},
and let D(U (7, R)) be analogously defined.

We shall consider the problem of convergence of the MN q.f. as {0 and
R4 oo, We state the following well-known proposition.

Proposition 5.1. {¢,, (2) ). o 1S an orthonormal complete sequence in D (U (v, R)),
where

m 41 am . . .
¢m(z)_l/ 7 V—R‘mﬁ’ M—=-—03, ..., 00; m#:—'l
and
1 1 1
z) = — —.
109 Y2n Z Viog Rjr
Let r= 7;7, 0<A< oo, and consider the series {2m--2}3"}, and

{A(2m—2)}2" ;. Combine and order the two series, and choose the smallest
2m —1 terms. Assume that the 2# —1% term is strictly less than the 2% term.

Let m; = —1 be the largest integer such that 2m, 42 is in the set, where
my = — 1 indicates that none of the terms of the first series lie in the set. Similarly,
let m, =1 be the largest integer such that A (2m, — 2) lies in this set, where my =1
indicates that none of the terms of the second series lie in the set. Thus, m, 4 m, =
2n—1.

Let R, R"U’f}'g_z_ ) be defined in the usual manner and assume [, b]CU (Ry A Ry,
R, finite, a > 0. Then,

Theorem 5.1. Under the above assumption, the coefficients and nodes of the MN
q.]. R%{}’H, r) converge, as R—> oo, to the coefficients and nodes of the Gaussian q.f.
associated with the EC T-system {x*}m on [a, b].

k= 1y
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Remark 5.1. Note that 2= —1 is always in the set. The condition
max {2m, + 2, A(2my —2)} <min{2{m, +1) +2, A(2{m,+1) —2)}

is necessary in the theorem. The cases with equality are, in effect, the boundary

points, and we make no definite statement on the convergence at these values
of 4.

Proof. The analysis follows the pattern of Theorem 3.1. Let RS indicate the
Gaussian q.f. with respect to the functions given in the statement of the theorem.
Let ! be any number such that

max {2m, +2, A(2my —2)} <I<min {2(m, +1) +2, A(2(my +1) —2)}.
Lemma 5.1. Under the above assumptions,

Rl"RU(R—A R)"%](R-A, r—>0 as R? oo,
Proof. Since

RS lo s, Z N RY k-, 0 Jo s, 21
for all R >0, it is sufficient to prove that R’| RS |} (z-3 z—0 as R4 co.

RIRSI s =R 5 |RE(6nl@)l®
=R [M=§,+1 IRSI; (d)m (z)) |2+ mg_zm‘_l lRf]; (¢m (z))lzl

by the definition of R§. For given R,, | Rf|u(x:2 r) < . Now,

2

m+1 il
R RS (¢m(2)|2=FR' l—nl‘ RS ( (Rimt7 — R-AGmt D)} )

Rllem-i-z - Ro—l(zm+2)| |m 41 l
| R2m+3 — R—Aam+i3)| Ed

Pdiad 2
A (R%”’*” _ Ro—l(xm+:)),} ’

and for m =m, +1, m; +2, ..., oo, and m=—m, —1, —my—2, ..., —o0,
Rllem-{-l . Rb—l(zm+ﬁ)|
|Ram+2 — R—Azm+2)|
R, fixed. The lemma follows. Q.E.D.

Proof of Theorem 5.1 (continued). By the above, R'||RU(R_,1 R)"U(R_l, »—>0 as
R4 co. Hence, R |RY{%-+ r) ($(2))|2—>0 as R} o, m=— oo, 00,

Thus, for m =0, 1, ..., m,,

—>0 as Rtoo,

2

Rl

-0

wy (VA -
RU(R—*, R) V}—t (Rzm+2 —_ R—A(am-m))}

as R4 co. Since 1> 2m, + 2, this implies that
lR,,, U(R-2, R) l'—>0 as RT 00,

m=0,1, ..., my. This same method applies to m =1, 2, ..., —m,.
Since {x"},,= —m, 18 an ECT-system on [a, b], a>0, the result is obtained via
application of Theorem 2.2. Q.E.D.
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The above results extend to the L? norms as was the case in Section 3. We
mention various corollaries, the proofs of which are analogous to the proof of
the above theorem.

Corollary 5.1, Let 5(U (R™% R)) be any closed subspace of D(U(R™* R))
containing the functions {z’}, k=—m,, ...,0,...,m. Then the results of Theorem
5.1 hold.

Corollary 5.2. Let CY{U(R™? ) {f: } regular analytic in U(R™ R),
IIfl'U(R-A <o, and f(z)= me,“ 2" +Z,;2_,k Zpn}, where {i}i_, is an in-
creasmg sequence of non-negative integers (k may be infinite), and {j}._, is an
increasing sequence of positive integers (1 may be infinite).

Then the M.N. q.f. on Cl(U(R"‘, R)) tends as Rt oo, to the Gaussian g.f.,
with respect to the EC T-system

(P, o (PR im,

where {iy+1, ..., 4, +1, A1 —1), ..., A(j,,, —1)} are the 2n smallest terms in
{z + 1}s=1u{}. — 1)}£ 1 and the 2n- th termis stnctly less than the 2n +1-st term
in the sequence.

6. Hilbert Subspaces and Bounded and Unbounded Rectangles

The examples have so far dealt with the functions {#*}32._ . In the following,
this is not the case.

Let B={z:2=x+1y,0<x< o0, —a<y<m} and B(r)={z:2=x+41y,
—r<x< o0, —w<ly <}

Let

E(B(r))={f f regular analytic in B (7 ( fflflzdxdy)
=|flp@ < oo, and f(2) Z, a,e~™* on B(r)}.
Then,

Theorem 6.1. Under the above assumptions, the M.N. q.f. on E(B(r)) tends,
as v} oo to the Gaussian q.f. with respect to the ECT-system {e™*}2" ., where
[a, b]€(0, o).

Ty [+ ]
Proof. Use the fact that {I/% e"”’e‘"“} , is an orthonormal complete
=

sequence in E (B(r)) and the methods of Theorem 3.1. Q.E.D.

A similar result holds for B(r) ={z:z=2 44y, —co<x<r, —n<y<m}
and E (B (r)) defined analogously to E(B(r)).
The situation corresponding to the annulus is the following. Let

B, r)={z:2=x+1iy, —ry,<x<n, —a<y<<m}

where 7,, 7,>0, and E (B (r,, 7,)) is defined analogously to E (B(r)).
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Let 7,=A4r, ,=r. Choose the smallest 2% —1 terms in the set {m}ary'u
{Am}ar! and assume that the 2# —4-st term is strictly less than the 2#-th term.
Assume the 2# —1 terms contain m, and Am,, but not m, +1, A(my+1).

Theorem 6.2. Under the above assumptions, the M.N. q.f. on E (B (r, Ar)) tends,
as r} oo to the Gaussian q.f. associated with the ECT-system {e"*}ni _, on [a, b]
where — 00 < a < b < oo,

Proof. Corresponding to past proofs.

We now list other examples, which are stated without proof. In these examples
assume, for sa.ke of convenience, that [a, 5]<(0, 1).
I. Let B(r) ={z: |2| <7, 2% —x, x 20}
Since thls is not a Caratheodory domain (see Markushevich [11]), it is known
that {z*}32, is not a basis for D (B (r)).
a) Consider the subspace of D (B(r)), C*(B(r)) spanned by {z*}s2o. Then the
limit, as 7} oo, is the Gaussian q.f. associated with {x*};

b) Consider the subspace of D(B(r)), C*(B(r)) spanned by {log z, {#}i>q}.
Then the limit, as 74 oo, is the Gaussian q.f. associated with {log x, {#*}i"5%}.

¢) Consider the subspace of D(B(r)), C*(B(r)) spanned by {*~1%}32,. Then
the limit, as 74 oo, is the Gaussian q.f. associated with {x*~42}2%¢1,

d) Consider the subspace of D(B(r)), C*(B(r)) spanned by
{ Rl u {10}

Then the limit, as 7} oo, is the Gaussian quadrature formula associated with
{x" o {x*F YA}, wherel=m=n—1if N=n—1,and if N<#n—1, m=N
and /=2n —2 —N. The analogous result holds when considering the subspace
spanned by {{*}_o U {zF VA2 o).

IL Let B(r, ) ={z: |2| <7, z=s¢*%, and —T <0<Z 7 » / a positive integer,

1>1}, D(B(r, 1)) is spanned by {z*}f2, since B(r,l) is a Caratheodory domain.
The sets of functions {™*%}%°_o, %k=0,1,...,!/—1 are each orthogonal on
B(r,1), i.e., (2% 278 =0, m #=n, for fixed k=01, ..., ] —1.

a) Let C'(B*(r,1)) be the subspace of D(B(, )) spanned by {z"tF} o,
k fixed. Then the limit, as 74 oo, is the Gaussian q.f. associated with {x™}+¥}3n-l.

b) Let C*(B(r,1); jo, ..., f1—1) be the subspace of D(B(r,I)) spanned by

C} {z"+]y_ where at most are of the 7, is infinite, and j, = —1 indicates that
E=0
the corresponding set is empty. Then the limit, as 71 oo, is the Gaussian q.f.
1-1
associated with the lowest 2 powers in () {5}
k=0

The results of I and II also extend in the various directions as indicated by
the corollaries of Section 5.

7. Related Questions

In this section we indicate other areas in which the previous analysis is
applicable.
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1. Minimum norm Quadrature Formulae with Fixed knots
Let

b
Rf=[f(x)w( dx—Z Za i1 (), (7.1)
a 11— 7._
where cEN < <y =d, g, pfixed, i=1, ..., %, [a, b]<[c, d] (¢, d finite), and
k_1(u;+1) =n. Associated with each quadrature formula of this form there
exist unique {a;}}4 such that Ru,=0, i=0,1,...,J, where {u}}_, is an
ECT-system on [c, 4]. Depending on the choice of {n;}}_; and {u}},,

)
n—A<I=2 (u;+1)+k—E—1,
=1
where E counts the #; for which y; is odd, or n; ¢(a, b).

We consider the class of quadrature formulae obtained by allowing the
coefficients {a,}}_, % #io to vary. Analogues to Theorems 2.1 and 2.2 are easily
proven, and with this follows the extension to the results of Sections 3-6.

II. Minimum Norm Quadrature Formulae with Variable Knots
of Fixed Degrees

Consider the class of q.f. of the form (7.1) where the u; are fixed i =1, ..., &,
and each y; is even, but the 7, are permitted to vary within [¢, 4]. Then there
exist unique

nfs,  a<m <o <m<b, and {a;}1 4,

such that Ru,=0,1=0, ..., 2F_;(u;+1) +k—1=p, where {u;}?_,is an ECT-
system on [¢, 4] (see Karlin and Pinkus [9]). All the above theorems hold with
the obvious changes.

II1. Interpolation

For the case of the ellipse with foci at 41, the reader is refered to Barnhill
and Wixom [5]. The problem is as follows. Consider 2, 2, ..., 2,€B, where
z;%2;,1,7=0,1,..., k. Let R,f be the linear functional defined by

R, f=](z) — Z Za,f"’

i=1 j=0

where {z.}f_o, {u}t-1 are fixed, and 3%, (u; +1) =n. We consider the class of
linear functionals obtained by allowing the {a;} to vary. The results then follow
those of Sections 2-6.

In general, any class of remainder formulae

Rf=Lf— éﬂaiL,-m
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where L;f=f(z;), 2,€B, Lf is a bounded linear functional on D (B), and the g4;
are free to vary, will satisfy the analysis of Sections 2-6 (see Golomb and Wein-
berger [7]).

The author wishes to acknowledge his indebtedness, and express his appre-

ciation to Professor S. Karlin, without whose guidance this work would not have
been possible.
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