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Let X be a uniformly convex and uniformly smooth Banach space. Assume that 
the Mi, i = 1, . . . , r, are closed linear subspaces of X, PMi

is the best approximation 
operator to the linear subspace Mi, and M := M1 + · · · + Mr. We prove that if M
is closed, then the alternating algorithm given by repeated iterations of

(I − PMr
)(I − PMr−1 ) · · · (I − PM1 )

applied to any x ∈ X converges to x − PMx, where PM is the best approximation 
operator to the linear subspace M . This result, in the case r = 2, was proven in 
Deutsch [4].

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In any uniformly convex Banach space X each closed convex set C is Chebyshev, see e.g., Cheney [3, 
p. 22]. That is, to each x ∈ X there exists a unique best approximation from C. Let PCx denote this best 
approximation. Thus PCx ∈ C and

‖x− PCx‖ ≤ ‖x− y‖

for all y ∈ C. Assume that the Mi, i = 1, . . . , r, are closed linear subspaces of the uniformly convex 
and uniformly smooth Banach space X. The question we consider is how and when we might find a best 
approximation to x ∈ X from

M := M1 + · · · + Mr

in the space X based on the knowledge of these PMi
.
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Historically the first method of this form that was studied seems to have been the alternating algo-
rithm. This algorithm goes under various names in different settings. Particular variants have been called, 
among other things, the von Neumann Alternating Algorithm, the Cyclic Coordinate Algorithm, the Cyclic 
Projection Algorithm, the Schwarz Domain Decomposition method, and the Diliberto–Straus Algorithm.

The basic idea is the following. We start with x1 := x ∈ X. We then find a best approximation m1 =
PM1x1 to x1 from M1, and set x2 := x1 − m1. We then find a best approximation m2 = PM2x2 to x2
from M2, and set x3 := x2 − m2, then find a best approximation m3 = P3x3 to x3 from M3, etc., and 
after cycling through all the subspaces Mj , j = 1, . . . , r, we then start again, i.e., after finding a best 
approximation from Mr we then go to M1.

More precisely, set

E := (I − PMr
)(I − PMr−1) · · · (I − PM1).

Thus, for each x ∈ X,

Ex = x−m1 − · · · −mr,

where mi is a best approximation to x −m1 − · · · −mi−1 from Mi, i = 1, . . . , r, i.e., mi = PMi
(x −m1 −

· · · −mi−1). Now consider

lim
s→∞

Esx.

Note that Esx = x − ys for some ys ∈ M . The hope is that this scheme will converge, and converge to 
x − PMx.

In the Hilbert space setting von Neumann already in 1933 (see von Neumann [7]) showed the desired 
convergence of the above-mentioned alternating algorithm in the case of two subspaces, without demanding 
closure of the sum. This was extended to any finite number of subspaces in Halperin [6]. See Deutsch [4,5] for 
a discussion of this method. There are, by now, numerous different proofs of this result, and many additional 
algorithms based on the knowledge of these {PMi

}ri=1. As an example, in any Hilbert space iterations of 
the operator E = I −

∑r
i=1 μiPMi

, where μi ∈ (0, 2) and 
∑r

i=1 μi < 2, applied to x always converge to 
x − PMx. See Bauschke, Borwein [1] for additional examples. The linearity and orthogonality properties 
of the PMi

in Hilbert space are both relevant and expedient. However in the non-Hilbert space setting, 
where the PMi

are not linear operators, there seem to be very few results, and many of these are rather 
specialized.

In this note we prove that if X is a uniformly convex and uniformly smooth Banach space, the Mi are 
closed linear subspaces, and M is also closed, then this classic alternating algorithm necessarily converges 
as desired. (Note that the closure of the Mi does not imply the closure of M .)

This result is not valid in every normed linear space, see e.g., Deutsch [4]. In any normed linear space X

which is not smooth, one can construct two linear subspaces M1 and M2, and an x ∈ X for which PMi
x = 0, 

i = 1, 2, and yet the zero element is not a best approximation to x from M1 + M2.

2. Main result

In the proof of our main result we assume that both the Mi, i = 1, . . . , r, and M are closed. This closure 
finds its expression in the following fundamental result, see Browder [2] (also in Bauschke, Borwein [1]).

Lemma 2.1. Let X be a Banach space. Assume

M = M1 + · · · + Mr
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where M , M1, . . . , Mr are closed linear subspaces of X. Then there exists a κ > 0 such that each m ∈ M

has a representation of the form

m = m1 + · · · + mr

where mj ∈ Mj, j = 1, . . . , r, and

‖m1‖ + · · · + ‖mr‖ ≤ κ‖m‖.

Proof. Introduce the norm ∥∥(m1, . . . ,mr)
∥∥ = ‖m1‖ + · · · + ‖mr‖

on M1 × · · · ×Mr. Let

L : M1 × · · · ×Mr → M1 + · · · + Mr = M

be the linear map given by

L(m1, . . . ,mr) = m1 + · · · + mr.

This map is continuous and onto M . Since M is complete, it follows from the Open Mapping Theorem 
that there exists a κ > 0 such that for each m ∈ M there exists (m1, . . . , mr) ∈ M1 × · · · ×Mr such that 
L(m1, . . . , mr) = m and ‖(m1, . . . , mr)‖ ≤ κ‖m‖, i.e.,

‖m1‖ + · · · + ‖mr‖ ≤ κ‖m‖. �
The proof of the following result in the case r = 2 is due to Deutsch [4]. If the PMi

are linear, which is 
rare indeed, then this result, for any finite r, without the demand of the closure of M , and for a smooth 
uniformly convex X, is in Reich [8].

Theorem 2.2. Let X be a uniformly convex and uniformly smooth Banach space, and let Mi, i = 1, . . . , r, 
be closed linear subspaces. If M := M1 + · · · + Mr is closed, then

lim
n→∞

[
(I − PMr

)(I − PMr−1) · · · (I − PM1)
]n
x = x− PMx

for each x ∈ X.

Proof. For notational ease, set Pj = PMj
and P = PM . For every Pj as above, we always have∥∥(I − Pj)x

∥∥ ≤ ‖x‖. (2.1)

Set

Hsr+j = (I − Pj) · · · (I − P1)Es

for j ∈ {1, . . . , r} and s ∈ Z+, the set of nonnegative integers. Note that Hsr+r = Es+1. Now

Hkx = x− yk =: xk

where yk ∈ M . Furthermore, from (2.1)
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‖xk‖ ≤ ‖xk−1‖ (2.2)

for all k. As such

lim
k→∞

‖xk‖

exists. If

lim
k→∞

‖xk‖ = 0,

then there is nothing to prove since this implies that x ∈ M , by our assumption of closure, and yk converges 
to x. As such, we assume that

lim
k→∞

‖xk‖ = C > 0.

For each k ∈ N, let φk be the continuous linear functional on X (as X is smooth, φk is uniquely defined) 
satisfying

(a) ‖φk‖ = ‖xk‖,
(b) φk(xk) = ‖xk‖2.

For k = sr+j, j ∈ {1, . . . , r}, we also have from the best approximation property and the definition of Hsr+j

that

(c) φsr+j(mj) = 0 all mj ∈ Mj , j ∈ {1, . . . , r}.

For the existence of these {φk}, see e.g., Singer [9, p. 18]. Note that

xsr+j − xsr+j−1 ∈ Mj ,

and thus

φsr+j(xsr+j−1) = φsr+j(xsr+j) = ‖xsr+j‖2.

We first claim that for every j, k ∈ {1, . . . , r} we have

lim
s→∞

‖φsr+j − φsr+k‖ = 0.

It obviously suffices to prove that

lim
s→∞

‖φsr+j − φsr+j−1‖ = 0,

for j ∈ {2, . . . , r}. Now

‖φsr+j + φsr+j−1‖
2 ≥ (φsr+j + φsr+j−1)(xsr+j−1)

2‖xsr+j−1‖

= φsr+j(xsr+j−1) + φsr+j−1(xsr+j−1)
2‖xsr+j−1‖

= ‖xsr+j‖2 + ‖xsr+j−1‖2
2‖xsr+j−1‖
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≥ ‖xsr+j‖
= ‖φsr+j‖.

Thus

‖φsr+j + φsr+j−1‖
2 ≥ ‖φsr+j‖. (2.3)

Furthermore

lim
s→∞

‖φsr+j‖ = lim
s→∞

‖xsr+j‖ = C > 0.

As X is uniformly smooth, then X∗ is uniformly convex. By this is meant that the modulus of uniform 
convexity defined by

δ(ε) = inf
{

1 − ‖f + g‖
2 : f, g ∈ X∗, ‖f‖ = ‖g‖ = 1, ‖f − g‖ ≥ ε

}
is strictly positive for ε > 0. (δ(ε) is, by definition, an increasing function of ε ∈ (0, 2] that decreases to zero 
as ε decreases to zero.)

Set

fs = φsr+j

‖φsr+j−1‖
, gs = φsr+j−1

‖φsr+j−1‖

and ε = ‖fs − gs‖. Since ‖fs‖ ≤ ‖gs‖ = 1, we have

δ(ε) ≤ 1 − ‖fs + gs‖
2

which, when substituting for ε, fs and gs, gives us

‖φsr+j−1‖ δ
(
‖φsr+j − φsr+j−1‖

‖φsr+j−1‖

)
≤ ‖φsr+j−1‖ −

‖φsr+j + φsr+j−1‖
2 .

From (2.3) we obtain

‖φsr+j−1‖ δ
(
‖φsr+j − φsr+j−1‖

‖φsr+j−1‖

)
≤ ‖φsr+j−1‖ − ‖φsr+j‖.

From (2.2) and (a) the right-hand side tends to zero as s tends to ∞. As ‖φsr+j−1‖ is bounded away from 
zero we must have, by the definition of the modulus of convexity,

lim
s→∞

‖φsr+j − φsr+j−1‖ = 0.

We therefore obtain

lim
s→∞

‖φsr+j − φsr+k‖ = 0

for every j, k ∈ {1, . . . , r}.
We recall that

Hsr+jx = xsr+j = x− ysr+j .
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We can write

x− xsr+j = ysr+j = m̃1 + · · · + m̃r

for some m̃� ∈ M�, � = 1, . . . , r (these elements also depend upon s and j) where, by Lemma 2.1, for some 
fixed κ > 0,

‖m̃1‖ + · · · + ‖m̃r‖ ≤ κ‖ysr+j‖ ≤ κ
[
‖x‖ + ‖xsr+j‖

]
≤ 2κ‖x‖.

Let y be any element of M satisfying ‖x − y‖ ≤ ‖x‖. Set

y = m1 + · · · + mr

where m� ∈ M�, � = 1, . . . , r, and

‖m1‖ + · · · + ‖mr‖ ≤ κ‖y‖ ≤ 2κ‖x‖,

for κ > 0 as in Lemma 2.1. Now, for y as above,

‖xsr+j‖2 = φsr+j(xsr+j) = φsr+j(x− ysr+j) = φsr+j

(
x−

r∑
k=1

m̃k

)

= φsr+j(x− y) + φsr+j

(
y −

r∑
k=1

m̃k

)
= φsr+j(x− y) + φsr+j

(
r∑

k=1

(mk − m̃k)
)
.

Since φsr+k(mk) = 0 for all mk ∈ Mk we have

‖xsr+j‖2 = φsr+j(x− y) +
r∑

k=1

(φsr+j − φsr+k)(mk − m̃k)

≤ ‖φsr+j‖ ‖x− y‖ +
r∑

k=1

‖φsr+j − φsr+k‖ ‖mk − m̃k‖

≤ ‖φsr+j‖ ‖x− y‖ +
r∑

k=1

‖φsr+j − φsr+k‖ 4κ‖x‖

= ‖xsr+j‖ ‖x− y‖ + 4κ‖x‖
r∑

k=1

‖φsr+j − φsr+k‖.

Let s → ∞ and recall that we have

lim
s→∞

‖φsr+j − φsr+k‖ = 0

for j, k ∈ {1, . . . , r}. Furthermore

lim
s→∞

‖xsr+j‖ = C > 0.

Thus, we obtain

lim ‖xsr+j‖ ≤ ‖x− y‖

s→∞
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for every y ∈ M satisfying ‖x − y‖ ≤ ‖x‖, and therefore

lim
s→∞

‖x− ysr+j‖ ≤ min
y∈M

‖x− y‖ = ‖x− Px‖.

It easily follows from the definition of uniform convexity that ysr+j must converge to Px in X as s → ∞. 
This is valid for each j ∈ {1, . . . , r}. �

If the Mi are all finite-dimensional linear subspaces, then M is closed and Theorem 2.2 can be more 
easily proven.

As was mentioned, in the Hilbert space setting convergence is obtained without the necessity of the 
closure of the sum. It is still an open question as to whether this closure property is necessary here. For 
more on this, see Deutsch [5, p. 234]. In addition, if we are in a Hilbert space, and the sum of the spaces is 
closed, then there exist constants C and θ, where C > 0, 0 ≤ θ < 1, such that

‖PMx− yn‖ ≤ Cθn

for all n ∈ N. In the optimization literature this is called linear convergence. Nothing is known in this setting 
regarding convergence rates.
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