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Bernstein's comparison theorem and a problem o[ Braess 

A. PINKUS 

1. Introduction 

Let  f, g~ C"+l[a, b], and assume that ]g("+l)(x)l ~f(n+l)(x) for all x ~ [a, b]. It 

is a classical result of S. Bernstein [1], commonly referred to as the Bernstein 
comparison theorem, that an upper  bound on the value of the best approximation 
to g in the uniform (L =) norm by polynomials of degree less than or equal to n is 
the value of the corresponding best approximation to f. 

In [3], D. Braess gives a partial generalization of this result to the nonlinear 
problem of the best approximation of functions, in the uniform norm, by splines 
of degree n with k variable knots (n and k are fixed). Namely, let 9°,.k denote  this 
class of polynomial splines of degree n with k variable (free) knots. Then,  

T H E O R E M  1 (Braess [3]). Let  f, g e C"+~[a, b] and assume that 

0 ~< g~"+l)(x) ~< f " ÷ ' ( x ) ,  xe[a, hi. (1) 

Then, 

min [ I g - S l l ~  < min Ilf-SIIo~ (2) 
S ES%.k S cSe~.k 

The method of proof of this theorem is through the study of monosplines. 
Unanswered is the question of whether  (2) remains valid if the assumption (1) is 
replaced by 

[g("+l~(x)l ~ f~"+l~(x), x ~ [a, b]. (3) 
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In this note we show how to extend Braess' theorem to the case where (3) 
replaces (1). In this case (2) is no longer valid. We demonstrate this fact by 
determining the precise upper bound on the best approximation of the class of 
functions g satisfying (3), by splines of degree n with k variable knots, i.e., we 
solve the analogue of Theorem 1 with condition (3). What  is especially striking is 
that we also show that interpolation at n + k + 1 fixed, distinct points by splines of 
degree n with k fixed knots (the points and knots depend upon f) gives the same 
upper bound as that which is obtained for the best approximation from 5¢n. k to the 
class of functions g satisfying (3). As a simple consequence, we also characterize 
the best constant in the degree of approximation from ~en, k, of functions in the 
Sobolev space W~ +1 which satisfy Ig¢"÷~l~ < 1. 

In the proof of the above facts we shall have recourse to another generaliza- 
tion of Bernstein's comparison theorem. Since we were unable to find the result in 
the literature we have presented, in Section 2, a general version of Bernstein's 
comparison theorem for best approximations by weak Chebyshev systems in 
any monotone normed space. However it should be noted that it is only Corollary 
2.1 which is subsequently used in Section 3. 

2. Bernstein's comparison theorem for weak Chebyshev systems 

Given a set of n + 1 continuous, linearly independent functions {Uo, ul . . . . .  u,,} 
on [a, b], we say that {u~}g is a weak Chebyshev system of degree n on [a, b] if 
every linear combination of the {u~}~'=o has at most n sign changes on [a, b]. We 
say that {u~}~'=0 is a Chebyshev system on [a, b] if no non-trivial linear combina- 
tion of the {u~}7=o has more than n distinct zeros on [a, b], and that they form an 
extended Chebyshev system on [a, b] if u~ e C"+~[a, b], i = 0 ,  1 . . . . .  n, and no 
non-trivial linear combination has more than n zeros, counting multiplicites (see 
e.g., Karlin and Studden [7]). In what follows we shall make use of the orientation 
of the Chebyshev system. This orientation depends upon the following well- 
known proposition. 

PROPOSITION 2.1. Let  u ~ e C [ a , b ] ,  i = 0 , 1  . . . . .  n. Then  {u~}~ is a 
Chebyshev system o f  [ a, b ] if/ 

U (  0,1  . . . . .  n )=det(u~(xj) ) , i=o# 0 
\ X o ,  X l ,  • . . , Xn/ 

(4) 

for every choice of  {x~}~'=o satisfying a <<. x0< xl  < • • • < x,, <~ b. The  set {u~}~'=o is a 
weak  Chebyshev system on [a, b ] if  the above determinant  (4) is not  identically zero 
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and does not change sign for (Xo, xl . . . . .  x, )  satisfying a<-xo < Xl < • • • < x,  ~ b. 
It is an extended Chebyshev system ff the above determinant (4) is of one strict sign 
for a < ~ X o ~ X l < - . . . < . x ,  <~b where equalities among the x~'s indicates taking 
successive derivatives in the columns of the associated matrix. 

The orientation which we shall give to our Chebyshev (or weak or extended) 
systems is to demand that the determinants (4) always be non-negative. 

The following known proposition implies that it suffices, in what follows, to 
prove our theorem only for extended Chebyshev systems (see [7]). 

PROPOSITION 2.2. Let {u~}['=o be a weak Chebyshev system on [a, b]. There 
f U s in  exists a family of extended Chebyshev systems t ~J~=o, e > 0, with the property that 

lira u~(x)= u~(x), i =0 ,  1 . . . . .  n 
e--~O+ 

uniformly for x e [ a, b ]. 

We shall deal with the problem of approximating continuous functions by 
weak Chebyshev systems with respect to any norm f1" 11 on C[a, b] which satisfies 
the following two properties. 

I) If Ig(x)l~< If(x) I for all x e [a, b], then IIgll~<lLfll. 
II) If f ~  C[a, b] and {u~}~ is a weak Chebyshev system on [a, b], then there 

exists a best approximation ~"--o a*u~ to f, i.e., 

ao,aml.!n,a, ll~ = oa'* ll 
for which f - ~ ' = o  a*u~ has at least n + 1 zeros in [a, b]. 

It  is clear that any weighted L p norm, 1 ~< p ~<o0, has the above properties. Any 
norm which satisfies property I) is known as a monotone norm. Not every 
monotone norm satisfies property II). However monotone norms have been 
studied by Kimchi and Richter-Dyn [8], [9] and they show that any monotone 
norm satisfies property II) if {u~}['=o is an extended Chebyshev system and if we 
count zeros of multiplicity up to 2. Since for any monotone norm and for any 
f ~  C[a, b], Ilfll ~< cIIfll~, where C may be taken as the monotone norm of the 
function identically one on [a, b], it follows that the extended Chebyshev system 
{u~}['=o of Proposition 2.2 tend to the weak Chebyshev system {u~}~*=o in any 
monotone norm. This fact permits us, in the proof of the following theorem, to 
consider only extended Chebyshev systems. 
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Let  Sh denote  a best approximat ion to h ~ C[a, b] f rom span {Uo, u t , . . . ,  u,,} = 

[Uo, u~ . . . . .  u~]. 

T H E O R E M  2. Assume  that {u~}~=o is a weak  Chebyshev system on [a, b ], and 
that [!" 1t is any monotone norm thereon. A s s u m e  that f ±  g are both in the convexity 
cone of {uo, ul . . . . .  u,}, i.e., {Uo, u~ . . . . .  u,, f ±  g} are also weak  Chebyshev sys- 
tems on [a, b ]. Then 

Ilg - S.II ~ I l l -  sell. 

Proof. As indicated above,  we may assume that  {u~}~ o and {Uo, ul . . . . .  u,, f ±  g} 
are extended Chebyshev systems on [a, b]. By the result of Kimchi and 

Richter -Dyn [8], we have that  Z ( f - S f ) > ~  n + 1, where Z counts zeros up to 
multiplicity at most  two. 

Choose any n + 1 zeros of ( f -  Sf)(x), {xi}'~-+_~, a <- xl  <~ • • • ~ xn+l <<- b, where 
each zero is listed to its multiplicity. Le t  S g ( x ) = ~ o  biu~(x) denote  the unique 

Sx ~+~ Note  that function in [Uo, u~ . . . .  , u .]  which interpolates to g at the points ~ .~=1. 

f -  Sf and g - Sg have n + 1 common  zeros. Since f ± g are strictly in the convexity 
cone of {u~}~, i.e., {uo, u~ . . . . .  u . , f ± g }  are extended Chebyshev systems, it 
follows that  f +  g -  (Sf + Sg) have no additional zeros in [a, b]. 

In fact we may write 

[ ( f±  g ) -  (sf ± ~) ] (x)  - 

u ( O ,  1 . . . . .  n , f + g  I 
\ X l ~  X2~ . • • , Xn+l~, X~ 

0 , 1  . . . . .  . 

\ X l ~  X2~ . . . ~ Xn+l] 

where 

Uo(XO" " Uo(X,,÷l) Uo(X) I 
U (  0 ,1  . . . . .  n , f + g  "~ i i : 

I \ X l ,  X 2 . . . . .  Xn+l, X / =  U n ( X l )  Un(X,n+ l )  / l n ( X  ) " 

t ( f +  g)(xO ( f +  g)(x~+O i f ±  g)(x) 

Due to the orientat ion of the Chebyshev systems, 

[ ( f - S f ) ( x ) + ( g - S g ) ( x ) ] ( - 1 ) ' + " + l > - O ,  Xi~X~Xi+ 1 

i = 0, 1 . . . . .  n + 1, where Xo = a, x.+2 = b. 
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Thus Iff-S~)(x)l >I I(g-S~)(x)l for all x ~ [a, b] and, since I1"11 is a monotone 
norm, IIf-S~ll>>-IIg-Sgll. Because Sg is one possible, but not necessarily a best, 
approximant it immediately follows that I[f- Srll ~ llg - Sgll. 

C O R O L L A R Y  2.1. Let ~,,k(l~) denote the class of splines of degree n with k 
fixed knots given by ~ = (~  . . . . .  ~k), a < ~1 < " "" < ~ < b. Let f be any function for 
which f("÷l~(x)(-1)i÷k>-O a.e. on [~i, ~i+1], i = 0 ,  1 . . . . .  k, where t o = a ,  ~k+t=b. 
Let g satisfy 

lg°~+'(x)l~[f°~+l~(x)l a.e. in [a,b]. 

Then the error in the best approximation of g from 5P.,k (~) in any monotone norm 
is less than or equal to the error in the best approximation to f from 6P.,k (t~). 

Proof. The corollary rests on the fact that any f as above lies in the convexity 
cone of the weak Chebyshev system {1, x . . . . .  x ", (x - ~)2 . . . . .  (x - ~k)~} which is 
a basis for SQk(~), see [10]. 

3. A problem of Braess 

Let 5e,, k denote the class of polynomial splines of degree n with k variable 
(free) knots. As stated in the introduction, Braess [3] proved that if we denote by 
Sf and Sg the best approximations to f, g ~ C[a, b] from 5Qk in the uniform norm, 
then under the assumption that 0 ~< g('~+~)(x)~< f("+l~(x) a.e. in [a, b], it follows that 

ltg- sdL ~< ]If- sflL. 
In order to ease our exposition, we introduce the following notation: 

W 2 + l = { f : / a , ,  abs. cont., Ilf("+l~[]oo< oo} 

W(h)  = {f : f c W~ +l, lf("+l)(x)[ ~< h(x) a.e.} 

where h is some non-negative function in L ~. Also 

5%,k = {S(x) 
1 ~ - - 1  

= a,x'÷ E I; b,,(x- 
i=O i = l  j=O  

. "  £ 
i = l  

The idea of the proof of Theorem 3 is to construct an f * ~  W(h)  which has the 
zero function as a best approximation from ~,,k, and for which I]g-Sglloo ~< [If*l[o~ 
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for all g ~ W ( h ) .  This generalizes Braess' result. We shall in fact prove more, 
namely that llg-Sgll~<llf*li~, where Sg is an interpolation operator to g at 
n + k + 1 fixed points by splines of degree n with k fixed knots. 

The construction of f* (x )  is based on the following proposition. 

PROPOSITION 3.1. Let  W ( h )  be as given above. There exists a function 

f* ~ W ( h )  with the fol lowing properties: 
1) There exist knots ~* = (~*~ . . . . .  ~*), ~*o = a < 1~*~ < . . .  < ~*k < b = ~*+~ such 

that (f*)("+l~(x) = e ( - l y h ( x ) ,  a.e. for x e ( ~ ,  ~*+0, i = O, 1 , . . . ,  k, where e = + 1 

fixed. 
2) f* (x )  equioscillates at n + k + 2  points, i.e., there exist tSx*t"+~+a~J~=~ , a ~  <x~*< 

* <~ b, for which • . ,  ~ X r t + k + 2  

f*(x~)  = 8(-1)'llf*ll~, i = 1 . . . .  n + k + 2 

where 8 = d=l, fixed. (In fact  8 = e(-1)".) 

This theorem represents a slight generalization of the existence of equioscillat- 
ing perfect splines due to Karlin [6]. (See also Cavaretta [4]). We here present a 
proof of the proposition for completeness and because it is short and direct. 

Proof. Let ~k = {z : z = (zl  . . . . .  Zk+l), E~-+-I IZ, I = b - a}. Le t  

i 

t( ')= ~. Izjl+a, i = 1 ,  k + l .  i " ' ' ~  

i=1 

Thus 

t(o ") - <  t (~) ~ <  • • • "~ "(') -< "(z) = b .  = a ~  1 "'~tk ~ t k + l  

Set 

F~(x) = ~ (sgn z~) ~ (x -y)~.h(y)  dy. 
i = I 1 ( t l  

Note that F,(x)  is a function in W ( h )  for which ~ + l ) ( x ) =  (sgn z i )h(x) ,  a.e. for 
X E ( t  (z) (z) i-1, ti ). Now, {x~}~'+0 k is a Chebyshev system on [a, b] and as such there exists, 
for each F.(x) ,  a unique best L~-approximation from polynomials of degree n + k. 
Let  .+k i x i .+k Y~=o a~(z)x denote this best L~-approximation to Fz(x) .  Since { }~=o is a 

F r~+k i Chebyshev system, either z(X)-~i=o a~(z)x exhibits at lest n + k + 2  points of 
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equioscillation or F~(x) is a polynomial of degree n +k .  Furthermore by the 
Z n + k  uniqueness of the best approximation, the coefficients {a~( )}~=o are continuous 

functions of z, and since F_, (x)=-F. (x ) ,  they are also odd, i.e., a ~ ( - z ) = -  ai(z), 
i=O, 1 . . . . .  n+k .  

Set G(z)= (a,+l(z) . . . . .  a,+k(z)). G is an odd, continuous map of ~k into R k 
and hence by the Borsuk-Antipodensatz [2], there exists a point z* for which 
G(z*) = 0 ,  i.e., a,+~(z*)= 0, i =  1 . . . . .  k. 

Set f* (x)=  F..(x)-Y.~L0 ai(z*)x ~. The function f*(x) is not identically zero and 
* * < 0 ,  thus satisfies the conditions of the theorem if we can show that z~ z~+~ 

i = 1 . . . . .  k. Since f*(x) has at least n + k + 2 points of equioscillation, it also has 
at least n + k + 1 sign changes. A Rolle's theorem argument easily shows that 
f*("+~)(x) = l~+~(x )  must have at least k sign changes. This is possible only if 
z~ Z~+l<0, i = 1 . . . . .  k. The proposition is proved. 

PROPOSITION 3.2. Let f*(x) be as above. Then the zero function is a best 
approximation to f*(x) from 5°..k in the L=-norm. 

Proof. That the zero function is a best L=-approximation to ~ from 5°..k 
follows from the fact that f* equioscillates at n + k + 2 points. Indeed, assume that 
g e 9°.,k is a better approximant. Thus II/*- S[I~ < IIf*lL. Since f* equioscillates at 
n + k + 2  points, S = f * - ( f * - S )  has at least n +  k + 1 sign changes on [0, 1]. 
However it is well-known that any spline in 9°..k has at most n + k sign changes on 
any finite interval. This contradiction proves the proposition. 

T H E O R E M  3. Let (* ~ W(h) and b°",,k be as previously defined. I f  g ~ W(h), 
then 

min l[g- S[t~ ~< m i n  Ill*- sL = Ilf*L 
S~S°..k S~5°.,k 

(5) 

Proof. On the basis of Propositions 3.1 and 3.2, it remains to prove that we 
can find an approximant (not necessarily the best) Sg to g from 9°,,k for which 
[tg-~glL~<llf*lL. Let ~* =(~*,... ,~*) denote the k knots of f*(x) as defined in 
Proposition 3.1. Apply Corollary 2.1 to the class 5¢,,k(g*). Let Sg be any best 
approximant to g from 9°,,k(~*). From Corollary 2.1 we have 

since Ig("+l)(x)l~<tf*¢"+a)(x)l a.e., and f*("+l)(x) changes sign at the {~*}L1 and 
only there. The theorem is proved. 

It may in fact be shown by a Rolle's theorem argument that the function f*(x) 
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has exactly n + k + l  zeros which we denote  by {y.}[,__+~+l, a < y ~ * < ' . . <  
* < Y.+k+~ b. One may also prove, see Karlin [6], that 

* < ~ * <  * Yi ¢i Yi+.+l, i =  1 . . . . .  k. (6) 

The inequalities (6) guarantee the existence of a unique interpolant to any 
g c C[a, b] at the point ~ .~.+k+l tY iJi=l from 9°..k(~*). Thus from the proofs of Theorems 
2 and 3 we have 

T H E O R E M  4. Let f* and W(h) be as previously defined. Let S~ denote the 
unique interpolant to g at the points {y*}72~ from 5°.,k(~*). Then for every g ~ W(h) 

{Ig - Sg I[~o < llf*L. 

As a result of Theorem 3, we also have 

C O R O L L A R Y  3.1. Let g ~ W2 +t, and let Sg denote a best approximation to g 
from 9~.,k in the L=-norm. Then, 

Ilg- s.L c* llg °+'L (7) 

where C* is the norm of the equioscillating perfect spline of degree n + 1 with k 
knots, whose (n + 1) derivative is equal to one in absolute value. Furthermore, the 
inequality (7) is exact. 

A perfect spline of degree n + 1 with k knots is a function of the form 

P(x) = t ai xl + c[ x"+l - 2(x - ~1)~_ +1 + 2(x - ~2)~. +1" . -  + ( -1)k2(x  - ~k)~_+l]. 
i=0  

where 

~1<'" "<~k. 

Remark 3.1. The above analysis applies in many situations other  than splines. 
For  example, let K(x, y) denote  an extended totally positive kernel on  [a, h i ×  
[c, d] (see Karlin [5]). Set 

{ ~1 ~'-l ~K(x' ~') t } ~/'. = E aij • .... :c~<~t < " ' "  <~l<<-d, ai~ER, gi <~n • 
i ]=0 ~y l  i=1 

Each f ~  C[a, b] possesses a best approximation Sf from ~ .  in the uniform norm. 
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Let 

K(h*)= {g(x)= IaK(x, y)h(y) dy: lh(y)t~h*(y)} 

where h* is a given non-negative L~-function. 
Then the results of this section apply. That  is to say, we can in a totally 

analogous manner,  prove the existence of an f* e K(h*) which is of the form 

f*(x) = ~. ( -1 )  i K(x, y)h*(y)  dy, 
i = 0  ,* 

where ~* = c < ~* < • * * "" < ~,~ <~.+1 = d, and which equioscillates at n + 1 points 
in [a, b]. A best approximation to f*(x) from Ygn is the zero function, and for 
every g e K(h*) 

Jig - S~I[= ~ Itf*ll=. 

Again interpolation at the zeros of f*(x) by a function of the form ~',L1 aiK(x, ~*,) 
is a sufficiently good approximant.  

Remark 3.2. Braess obtained an exact upper bound on the error  function for 
g satisfying 0<~g<'+l>(x)<~h(x). We did likewise for g satisfying -h (x)<~  
g<"+l>(x)~ h(x). Surprisingly neither method seems to carry over to the class of 

functions g satisfying h2(x) <~ g<"÷l>(x) <~ hi(x) for general hi, h2 ~ L ~. 

Remark 3.3. Since the results of Section 2 are valid for any monotone  norm 
and thus for any LP-norm, it is natural to ask whether the theorems of Section 3 
may be extended to any LP-norm for l < ~ p <  co. Each best approximant to 
f~  C[a, b] \ 9°,,k from ~¢,.k in the LP-norm, 1 ~< p < % must have k active knots 
(and hence is never the zero function). It follows from this fact that approximation 
by splines with variable knots in L ° for 1 ~< p < ~ is strictly better than approxima- 
tion by splines with fixed knots over  the class W(h). Thus the methods used above 
are restricted to problems of L~-approximation.  
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