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ON SOME ZERO-INCREASING OPERATORS

J. M. CARNICER, J. M. PE~NA (Zaragoza) and A. PINKUS (Haifa)

Abstract. We characterize the set of linear operators of the form

Tx
n = x

n +

n�1X

k=0

bn;kx
k
; n = 0; 1; : : : ;

which satisfy Z(Tp) = Z(p) for every polynomial p, where Z counts the number
of zeros on all of R. We also consider the analogous question on [0;1).

1. Introduction

Mathematicians have for many centuries studied problems connected
with the number and location of the roots of a polynomial under linear
transformations. A classic example thereof is Rolle's Theorem (from 1691).
Further examples abound.

The Hermite{Poulain Theorem (Hermite [4], Poulain [16]) is the follow-
ing (see also Obreschko� [12, p. 4], P�olya and Szeg}o [15, Part V, No. 63]).

Hermite{Poulain Theorem A. Assume

g(x) =

mX
k=0

bkx
k

is a polynomial with only real zeros. If p is any real polynomial, then the
number of non-real zeros of

h(x) =

mX
k=0

bkp
(k)(x)

is at most the number of non-real zeros of p. (If b0 6= 0, then we say that
the number of real zeros of h is at least the number of real zeros of p.)
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There are various proofs of this theorem. The essential idea is to note
that

h(x) =
�
g(D)p

�
(x)

where D = d=dx. As g has only real zeros, g(D) applied to p is a composition
of the operators (D � �I)p, with � 2 R. It thus su�ces to verify that this
operator has the desired property. For � = 0 we apply Rolle's Theorem (here
b0 = 0). If � 6= 0, then it is easily checked that between every two real zeros
of p there is a zero of (D � �I)p. Thus (D � �I)p has at least the number
of real zeros of p less 1. However as � 6= 0, the degree of the polynomials
(D � �I)p and p are the same. Thus the parity of the number of real zeros
of (D � �I)p and p is the same, and (D � �I)p must have at least as many
real zeros as p.

A specialization of this theorem is the following.

Hermite{Poulain Theorem B. Let g be as above and assume g has
all positive zeros. Then the number of non-negative zeros of h is at least the
number of non-negative zeros of p.

In fact if 0 5 x1 5 � � � 5 xk are the non-negative zeros of p, listed to their
multiplicity, then there exist zeros of h, 0 5 y1 5 � � � 5 yk, listed to their mul-
tiplicity, satisfying xi 5 yi, i = 1; : : : ; k. This theorem is a consequence of the
previous theorem, and the additional fact that for � > 0, (D � �I)p has the
same sign as p near and to the right of xk, but the opposite sign to p at
in�nity. Thus (D � �I)p has an additional zero in (xk;1).

We introduce the notation ZI(p) to denote the number of zeros (counting
multiplicity) of a polynomial p on the interval I. For convenience we will
drop the I when counting zeros on all of R. In addition, we let � denote the
space of real-valued polynomials.

Another famous theorem about zero-counting is the following due to La-
guerre [11] (see also Obreschko� [12, p. 6]).

Laguerre's Theorem. Assume g is a polynomial with only real zeros,
all of which lie outside the interval [0; n]. Then for any real polynomial of
degree at most n,

p(x) =

nX
k=0

akx
k

we have

Z

� nX
k=0

akg(k)x
k

�
= Z

� nX
k=0

akx
k

�
:

This theorem is a consequence of the fact that if

g(x) = b

mY
j=1

(x� �j);
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then
nX

k=0

akg(k)x
k = b

mY
j=1

(xD � �jI)p(x):

As these linear operators commute, Laguerre's Theorem now follows from a
carefully checked Rolle's Theorem argument which implies that

Z
�
(xD � �I)p

�
= Z(p)

for � 62 [0; n]. (Consider the sign of (xD� �I)p at the zeros of p. For � < 0,
the sign of (xD � �I)p at 0 is of opposite sign to the sign of (xD � �I)p
evaluated at the least positive and/or greatest negative zeros of p. For � > n,
the polynomials p and (xD � �I)p are of opposite sign at 1 and �1.)

In addition to this general result, various particular and limiting cases of
this result may be found in the literature. For example, from this theorem
of Laguerre we obtain the inequalities

Z

� nX
k=0

ak

�
n

k

�
x
k

�
= Z

� nX
k=0

akx
k

�

and

Z

� nX
k=0

akq
k2

x
k

�
= Z

� nX
k=0

akx
k

�

for jqj 5 1.
To explain some further extensions of these results and what will be

proven in this paper, we �rst recall what we may obtain as limiting cases of
the polynomials g in the above-mentioned theorems.

Based on work of Laguerre [10] and P�olya [13], see e.g., Obreschko� [12,
pp. 31{42], Karlin [9, Ch. 7, x2], Widder [18, Ch. 7], the following is known.
(More exact details may be found in the above references.)

Let A1 denote the class of entire functions of the form

�1(z) = Cz
m
e
�c2z2+az

1Y
k=1

(1 + �kz)e
��kz

where C; c; a; �k 2 R, m is a nonnegative integer, and
P1

k=1 �
2
k
<1. Then

A1 is the analytic extension of those functions de�ned onR which may be ob-
tained as the uniform limit (on [�A;A], every A > 0) of polynomials having
only real zeros.

With regard to the two exponential functions in the above, note that

e
ax = lim

m!1

�
1 +

ax

m

�m
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and

e
�c2x2 = lim

m!1

�
1� cxp

m

�
m
�
1 +

cxp
m

�
m

:

Let A2 denote the class of entire functions of the form

�2(z) = Cz
m
e
�az

1Y
k=1

(1� �kz)

where C 2 R, a = 0, m is a nonnegative integer, �k = 0 and
P1

k=1 �k <1.
Then A2 is the analytic extension of the functions de�ned on R which can
be obtained as the uniform limit (on [�A;A], every A > 0) of polynomials
having only real positive zeros. (Of course there is the analogous result for
limits of polynomials having only real negative zeros.)

Finally we also have, based on A1 and A2, the following class (see La-
guerre's Theorem). We let A3 denote the class of entire functions of the
form

�3(z) = Cz
m
e
�c2z2+az

1Y
k=1

(1 + �kz)e
��kz

where C; c; a 2 R, m is a nonnegative integer, �k = 0 and
P1

k=1 �
2
k
<1.

The class A3 is the analytic extension of those functions de�ned on R which
can be obtained as the uniform limit (on [�A;A], every A > 0) of polynomi-
als having only real zeros, all of which are outside [0; n] for any n 2N. (This
latter condition is to be understood within the context of Laguerre's Theo-
rem. That is, �3 is the uniform limit, as above, of polynomials gm, where
the gm have only real roots and where for each n 2 N there exists an M(n)
such that for all m > M(n) the roots of gm lie outside [0; n].)

The functions of class A1, A2 (and A3) are sometimes called P�olya{
Laguerre functions (see Karlin [9, Ch. 7]).

Returning to our previous results, P�olya and Schur [14] partially gener-
alized the result of Laguerre's Theorem in the following way.

P�olya{Schur Theorem. The following are equivalent for a sequence
fkg1k=0.

1) If
P

n

k=0 akx
k has all real zeros, then

P
n

k=0 akkx
k has all real zeros,

all n.
2)
P

n

k=0

�
n

k

�
kx

k has all real zeros of one �xed sign, all n.

3) The function

�(z) =

1X
k=0

k

k!
z
k

is an entire function and either �(z) or �(�z) is in A2.
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ON SOME ZERO-INCREASING OPERATORS 177

In other words, P�olya and Schur considered the \diagonal" linear opera-
tors given by

(1:1) Tx
n = nx

n
; n = 0; 1; : : : ;

and asked for conditions which exactly characterize when such operators have
the property that if p has all real zeros, then Tp has all real zeros.

Iserles, N�rsett and Sa� found, in a series of papers (see Iserles, N�rsett
and Sa� [7] and references therein), numerous examples of linear operators
T (taking polynomials of degree n to polynomials of degree n, all n) with
the property that if p has all its zeros in some given real interval I then Tp
has all its zeros in some interval J . Their motivation and techniques were
connected with orthogonal polynomials.

Based on the theorem of P�olya and Schur, it is natural to ask for con-
ditions on a linear operator T of the form (1.1) such that Z(Tp) = Z(p)
for every polynomial p. This non-trivial question was considered by Craven
and Csordas in a series of papers, see e.g. Craven and Csordas [3], Bakan,
Craven, Csordas and Golub [2], Bakan, Craven and Csordas [1], and refer-
ences therein. A direct generalization of Laguerre's Theorem implies that if
g 2 A3, and

Tx
n = g(n)xn; n = 0; 1; : : : ;

then Z(Tp) = Z(p) for every polynomial p, see Karlin [9, p. 382]. In addition
we can replace these g(n) by (�1)ng(n) and the same inequality holds. It is
not known if, for g(0) 6= 0, this is the full family of such operators.

In this paper we consider a di�erent class of linear operators and totally
characterize all such operators satisfying Z(Tp) = Z(p) for every polynomial
p. Our class of linear operators is given by

(1:2) Tx
n = x

n +

n�1X
k=0

bn;kx
k
:

That is, we will consider operators for which the degree of the polynomials p
and Tp is the same, but which explicitly do not include operators of the form
(1.1), i.e., they are unit lower triangular. The main theorem of this paper is
the following result.

Theorem 1. Let T be as in (1:2). Then

(1:3) Z(Tp) = Z(p)

for every polynomial p if and only if T = F (D) where F 2 A1 with C = 1
and m = 0. That is,
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(1:4) F (x) = e
�c2x2+ax

1Y
k=1

(1 + �kx)e
��kx

with �k; a; c 2 R and
P1

k=1 �
2
k
<1.

That F of this form satis�es (1.3) is a consequence of the Hermite{Poulain
Theorem A. It is the converse result which needs proving. In Section 2 we
prove and explain this theorem. In Section 3 we consider the analogous
question when we count zeros on [0;1). Here the situation is less evident.

2. Proof of Theorem 1

We divide the proof of Theorem 1 into a series of steps. We start with
the following.

Proposition 1. Let T be as above satisfying Z(Tp) = Z(p) for all
p 2 �. Then there exist real fckg1k=1 such that

(2:1) T = I +
c1

1!
D +

c2

2!
D

2 + � � � :

Furthermore for every n

Pn(x) =

nX
k=0

�
n

k

�
ckx

k

has only real zeros (c0 = 1).

Proof. If T has the form (2.1), then

Tx
n =

nX
k=0

�
n

k

�
ckx

n�k

has n real zeros (since xn has n real zeros). Substitute 1=x for x and multiply
by xn. This implies that Pn has only real zeros.

It remains to prove that T is of the form (2.1). For each n

Tx
n =

nX
j=0

bn;jx
j
;

with bn;n = 1. We will prove, by induction on k, that

(2:2) bn;n�k =

�
n

k

�
ck:
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We start with the case k = 1. For each a 2R, Z
�
(x+ a)n

�
= n and thus

Z
�
T (x+ a)n

�
= n:

By Rolle's Theorem it therefore follows that
�
T (x+ a)n

� (n�2)
has 2 real

zeros. A formal calculation shows that

�
T (x+ a)n

� (n�2)
= (n� 2)!

�
n(n� 1)

2
(x+ a)2 + (n� 1)bn;n�1(x+ a)

+ a
�
nbn�1;n�2 � (n� 1)bn;n�1

�
+ bn;n�2

�
:

This in turn implies that

n(n� 1)

2
y
2 + (n� 1)bn;n�1y + a(nbn�1;n�2 � (n� 1)bn;n�1) + bn;n�2

has 2 real zeros for every a 2 R. A necessary condition for this to hold is
that the coe�cient of a in the above vanish, i.e.,

nbn�1;n�2 � (n� 1)bn;n�1 = 0:

Setting b1;0 = c1 it is then easily seen that for all n = 1; 2; : : : ; bn;n�1 = nc1.
We now assume, by induction, that

bn;n�j =

�
n

j

�
cj ; j = 1; : : : ; k � 1;

for all n = j. Note that this implies that

Tx
n =

� k�1X
j=0

cj

j!
D

j

�
x
n +

n�kX
j=0

bn;jx
j
;

where c0 = 1 and D0 = I. We wish to prove (2.2) for all n = k.
As previously we consider T (x+ a)n. Using the induction a calculation

shows that

T (x+ a)n =

k�1X
j=0

�
n

j

�
cj(x+ a)n�j + bn;n�kx

n�k + bn;n�k�1x
n�k�1

+ nabn�1;n�k�1x
n�k�1 + lower order terms:
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Taking the (n� k � 1)st derivative gives a polynomial of degree k + 1 with
k + 1 real roots. It has the exact form

n!

(k + 1)!
(x+ a)k+1 +

�
n

1

�
c1
(n� 1)!

k!
(x+ a)k + � � �

+

�
n

k � 1

�
ck�1

(n� k + 1)!

2!
(x+ a)2 + bn;n�k(n� k)!(x+ a)

+ a(n� k � 1)!
�
nbn�1;n�k�1 � (n� k)bn;n�k

�
+ bn;n�k�1(n� k � 1)!:

Let y = x+ a. In order that this polynomial have k + 1 real zeros for all
a 2 R it is necessary that

nbn�1;n�k�1 � (n� k)bn;n�k = 0:

This is true for each n = k; k + 1; : : : : Set bk;0 = ck. Then (2.2) holds for
all n. �

The following is well-known, see e.g., Obreschko� [12, pp. 31{42], Karlin
[9, Ch. 7, x2], Widder [18, Ch. 7].

Proposition 2. Let fckg1k=0 be real numbers and assume

Pn(x) =

nX
k=0

�
n

k

�
ckx

k

has only real zeros (c0 = 1). Then the function

F (x) =

1X
k=0

ck

k!
x
k

is an entire function of the form (1:4).

In fact Pn(�=n) converges uniformly to F on [�A;A], any A > 0.
The remaining claim of Theorem 1 is a consequence of this next propo-

sition.

Proposition 3. Assume that the function

F (x) =

1X
k=0

ck

k!
x
k

is an entire function of the form (1:4). Then Z
�
F (D)p

�
= Z(p) for every

p 2 �.

We �rst recall the direct proof of this result and then explain the result
in more detail.
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Proof. Let F be as above and gn be any sequence of polynomials with
all real zeros which converges uniformly to F on [�A;A], any A > 0. One
could, for example, take gn = Pn(�=n) with Pn as above. As F (0) = 1, and
thus gn(0) 6= 0 for all n su�ciently large, it follows from the Hermite{Poulain

Theorem A that Z
�
gn(D)p

�
= Z(p) for every p 2 �. From Hurwitz's Theo-

rem concerning convergent sequences of analytic functions (see e.g., Hille [5,

p. 205]) it follows that Z
�
F (D)p

�
= Z(p) for every p 2 �. �

Propositions 1, 2 and 3 together prove Theorem 1.

To understand more fully what F (D) does to each p, let us consider each

of the factors e�c
2
D
2

, eaD and I + �D applied to p. The factor I + �D is
what appears in the Hermite{Poulain Theorem A. We will not discuss it
again.

Assume g(x) = e
ax. Then the operator eaD applied to p is just the shift

operator. That is,

g(D)xn = e
aD
x
n =

1X
k=0

a
k
D

k

k!
x
n =

nX
k=0

�
n

k

�
a
k
x
n�k = (x+ a)n:

Thus for every p,
�
g(D)p

�
(x) = p(x+ a). Obviously we have Z

�
g(D)p

�
=

Z(p).

Assume g(x) = e
�c2x2 . Before explaining the operator e�c

2
D
2

, we note
that

e
�c2D2

x
n =

[n=2]X
k=0

n!

(n� 2k)!k!
(�1)kxn�2kc2k:

The nth degree Hermite polynomial (with leading coe�cient 2n) is given by

Hn(x) =

[n=2]X
k=0

n!

(n� 2k)!k!
(�1)k(2x)n�2k:

Thus

e
�c2D2

x
n = c

n
Hn

�
x

2c

�
:

The inequality Z
�
g(D)p

�
= Z(p) thus may be seen to be equivalent to

Z

� nX
k=0

akHk(x)

�
= Z

� nX
k=0

akx
k

�

for all real fakgnk=0 and all n. This inequality is a special case of what was
proven above. We present another proof. It is lengthier, but worth noting. It
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is taken from Iserles and Sa� [8]. They were only interested in one particular

consequence, namely if
P

n

k=0 akx
k has only real zeros, then

P
n

k=0 akHk(x)
has only real zeros. But of course, more is true.

The proof is based on the well-known extended total positivity (ETP)

property (on R�R) of e�(x�t)
2

(or equivalently of ext), see Karlin [9]. We
�rst show that

e
2xt�t2 =

1X
n=0

Hn(x)t
n

n!
:

This may be found, for example, in Rainville [17].

1X
n=0

Hn(x)t
n

n!
=

1X
n=0

� [n=2]X
k=0

n!

(n� 2k)!k!
(�1)k(2x)n�2k

�
t
n

n!

=

1X
n=0

[n=2]X
k=0

(�1)k
(n� 2k)!k!

(2x)n�2ktn =

1X
k=0

1X
n=2k

(�1)k
(n� 2k)!k!

(2x)n�2ktn

=

1X
k=0

(�1)kt2k
k!

1X
n=2k

(2xt)n�2k

(n� 2k)!
= e

�t2
e
2xt
:

We also make use of the well-known orthogonality conditions

1p
�

Z 1
�1

Hn(x)Hm(x)e
�x2

dx = �nm2
n
n!:

Finally we note that

1p
�

Z 1
�1

Hn(x)e
�(x�t)2

dx = (2t)n:

This is a consequence of

1p
�

Z 1
�1

Hn(x)e
�(x�t)2

dx =
1p
�

Z 1
�1

Hn(x)e
2xt�t2

e
�x2

dx

=
1p
�

Z 1
�1

Hn(x)

� 1X
m=0

Hm(x)t
m

m!

�
e
�x2

dx

=

1X
m=0

t
m

m!

1p
�

Z 1
�1

Hn(x)Hm(x)e
�x2

dx =
t
n

n!
2nn! = (2t)n:
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With these preliminaries, we can now prove the result. As mentioned,

the ETP property of e�(x�t)
2

is well-known. As such for any polynomial p

Z

�
1p
�

Z 1
�1

p(x)e�(x�t)
2

dx

�
5 Z(p):

In particular, setting p(x) =
P

n

k=0 akHk(x) we get

Z

� nX
k=0

ak(2t)
k

�
5 Z

� nX
k=0

akHk(x)

�
:

Since Z
�P

n

k=0 ak(2t)
k
�
= Z

�P
n

k=0 akx
k
�
this implies

Z

� nX
k=0

akx
k

�
5 Z

� nX
k=0

akHk(x)

�
:

Assume T has the above form, i.e., Z(Tp) = Z(p) for every polynomial
p, and Txn = x

n + � � � : What can we say about the inverse of T ?
There are two cases to consider depending on the exact form of the above

F . If F (x) = e
ax, then (Tp)(x) = p(x+a) and obviously the inverse operator

is simply a shift by �a.
Assume F is not of this form. Then it follows from Karlin [9, Ch. 7], that

1=F is the Laplace transform of a P�olya frequency (PF) density. That is,

1

F (x)
=

Z 1
�1

e
�tx�(t) dt

where �(t� s) is totally positive (TP), and

Z 1
�1

�(t) dt = 1:

Furthermore if p and q are polynomials and F (D)p = q then

p(x) =

Z 1
�1

�(x� t)q(t) dt:

In other words, this integral operator is the inverse of T . We therefore have
the following.
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Theorem 2. Assume S is a linear operator on � of the speci�c form

Sx
n = x

n +

n�1X
j=0

an;jx
j
;

which satis�es Z(Sq) 5 Z(q) for every polynomial q. Then either (i) or (ii)
hold.

(i) (Sq)(x) = q(x� a) for some a 2 R.
(ii) There is a PF density � such that

(Sq)(x) =

Z 1
�1

�(x� t)q(t) dt:

Remark. As previously, let

Tx
n =

nX
k=0

�
n

k

�
cn�kx

k
:

The operator S can also be written in this form (calculate or see Karlin [9,
p. 344]). It is

Sx
n =

nX
j=0

�
n

j

�
�n�j(�1)n�jxj ;

where

�j =

Z 1
�1

�(t)tj dt:

(Since � is non-negative, all �2j are strictly positive.) The relations between
the ck and �j are given by c0 = �0 = 1 and

mX
j=0

�
m

j

�
cm�j�j(�1)j = 0

for all m = 1.

We end this section by asking how one can characterize the linear oper-
ators of the form

Tx
n =

nX
k=0

bn;kx
k

(here bn;n is not necessarily equal to 1 for all n) which satisfy Z(Tp) = Z(p)
for every p 2 �. Can all such operators be factored into products of opera-
tors of the form given in Theorem 1 and those \diagonal" operators which

Acta Mathematica Hungarica 94, 2002



ON SOME ZERO-INCREASING OPERATORS 185

have this same zero-increasing property? Unfortunately these two sets of
operators do not commute. As such, any factorization will not be simple.

3. The interval [0;1)

It follows from the Hermite{Poulain Theorem B that if g is a polynomial
with all positive zeros then

Z[0;1)

�
g(D)p

�
= Z[0;1)(p)

for every p 2 �. The correct closure of the set of all polynomials with all
positive zeros (normalized to be 1 at z = 0) is a subset of A2. It is the set of
entire functions of the form

(3:1) F (z) = e
�az

1Y
k=1

(1� �kz)

where a = 0, �k = 0, and
P1

k=1 �k <1. Thus for each such F

Z[0;1)(F (D)p) = Z[0;1)(p)

for every p 2 �.
It is natural to conjecture, paralleling Theorem 1, that any linear oper-

ator T of the form

Tx
n = x

n +

n�1X
k=0

bn;kx
k

satisfying

(3:2) Z[0;1)(Tp) = Z[0;1)(p)

for every p 2 � is of the form T = F (D) for some F as in (3.1).
We do prove an analogue of Theorem 1. However we shall show that the

above conjecture is not valid.

Theorem 3. Let T be a linear operator on � of the form

Tx
n = x

n +

n�1X
k=0

bn;kx
k
:

The following properties are equivalent:
(i) T = F (D) where F is of the form (3:1).
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(ii) Z[c;1)(Tp) = Z[c;1)(p) for every p 2 � and for all c = 0.

(iii) Z[c;1)(Tp) = Z[c;1)(p) for every p 2 � and for all c 2 R.

(iv) Z(Tp) = Z(p) and Z[0;1)(Tp) = Z[0;1)(p) for every p 2 �.

Proof. (i)) (iii). Using the same idea as in the proof of the Hermite{
Poulain Theorem it is easily veri�ed that if p has k zeros greater than or
equal to c, then (I � �D)p, � = 0, has at least k zeros greater than or equal

to c. Similarly (e�aDp)(x) = p(x� a), a = 0, shifts zeros to the right by a
units. Thus (iii) holds.

(iii)) (iv). For a given p we show Z(Tp) = Z(p) by taking c 2 R less
than the least real zero of p. Taking c = 0 completes the proof.

(iv)) (i). Since Z(Tp) = Z(p) for all p 2 �, we have from Theorem 1
that T = F (D) for some F of the form (1.4). Since Z[0;1)(Tx

n) = n this
implies that

Pn(x) =

1X
k=0

�
n

k

�
ckx

k

has only positive zeros, Pn(0) = 1. As Pn(�=n) converges to F , this implies
that F is of the form (3.1).

(iii)) (ii). This is obvious.
(ii)) (i). We follow the analysis in the proof of Proposition 1, in that

we prove that

(3:3) T = I +
c1

1!
D +

c2

2!
D

2 + � � � ;

and

Pn(x) =

nX
k=0

�
n

k

�
ckx

k

has only positive zeros (c0 = 1) for each n. From this latter fact we obtain
(i) (see the proof of (iv)) (i)). If T has the form (3.3) then Pn has only
positive zeros since Z[0;1)(Tx

n) = n.

It remains to prove that T has the form (3.3). We follow the proof of
Proposition 1. We �rst consider the case k = 1. We let a therein satisfy
a 5 0, and set c = �a = 0 in (ii). The only relevant point is that T

�
(x+ a)n

�
has n zeros in [�a;1), and thus its (n� 2)nd derivative evaluated at y = x

+ a must have two nonnegative zeros for all a 5 0. This (n� 2)nd derivative
is given by (up to a constant)

n(n� 1)

2
y
2 + (n� 1)bn;n�1y + a(nbn�1;n�2 � (n� 1)bn;n�1) + bn;n�2:

If nbn�1;n�2 � (n� 1)bn;n�1 is positive then taking a su�ciently large we
obtain a polynomial with a negative zero, a contradiction. If nbn�1;n�2 �
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(n� 1)bn;n�1 is negative then taking a su�ciently large we obtain a polyno-
mial which is positive on [0;1), again a contradiction. Therefore nbn�1;n�2
= (n� 1)bn;n�1.

Similar arguments can be applied to

n!

(k + 1)!
y
k+1 +

�
n

1

�
c1
(n� 1)!

k!
y
k + � � �+

�
n

k � 1

�
ck�1

(n� k + 1)!

2!
y
2

+ bn;n�k(n� k)!y + a(n� k � 1)!
�
nbn�1;n�k�1 � (n� k)bn;n�k

�
+ bn;n�k�1(n� k � 1)!

to further the induction on k as in the proof of Proposition 1. �

Remark. Let us observe that the property Z[c;1)(Tp) = Z[c;1)(p) for

every p 2 � and c 2 R is equivalent to the demand that if x1 = � � � = xr are
the real zeros of p, then there exist y1 = � � � = yr, zeros of Tp, such that
yi = xi, i = 1; : : : ; r.

Notwithstanding the above result, it is not true that every T satisfying
(3.2) is of the form T = F (D) for some F satisfying (3.1). Here are two
examples.

Example 1. The function yx is ETP on (0;1)� [0;1). (This follows

since yx = e
x ln y, and est is ETP on R�R.) Set

d (x) =

1X
k=0

1

k!
�k:

where �k is the point measure of mass one at k. The operator

(Sf)(y) = e
�y

Z 1
0

y
x
f(x) d (x)

satis�es Z(0;1)(Sf) 5 Z[0;1)(f) and for polynomials p we in fact have

Z[0;1)(Sp) 5 Z[0;1)(p). This operator is related to what Karlin [9, p. 446]

calls the Poisson{Charlier polynomials, and what Iserles and N�rsett [6,
p. 495] call the Charlier transformation.

It is easily checked that S1 = 1, Sx = y, and

�
S

�
x(x� 1)(x� 2) � � � �x� (n� 1)

���
(y) = y

n
:

Thus if we let T be the operator satisfying T1 = 1, Tx = y, and

(Txn)(y) = y(y � 1)(y � 2) � � � �y � (n� 1)
�
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then Z[0;1)(Tp) = Z[0;1)(p), for every polynomial p.

This operator T is not of the form T = F (D) for some F as in (3.1). For
if we write

Tx
n = y

n +

n�1X
k=0

bn;ky
k

then b1;0 = 0 and bn;n�1 6= 0 for all n = 2. This property does not hold for
any F (D), where we must have bn;n�1 = nb1;0. Another reason why T cannot
be of the form F (D) is that T does not commute with the factors of F (D).

By a change of variable in T or doing the same in the de�nition, it also
easily follows that

(Tcx
n)(y) = y(y � c)(y � 2c) � � � �y � (n� 1)c

�

also has this same property for any c > 0. Furthermore, so does T 2, T 3, etc.
Unfortunately T 2 is not T2 or any Tc (consider the polynomial T 2

x
3 (and

T
2
x
2)).

Example 2. Because xy�1 is ETP on (0;1)� [0;1) (see Example 1),
the operator

(Uf)(y) =
1

�(y)

Z 1
0

x
y�1

e
�x
f(x) dx

(see Iserles and N�rsett [6, p. 493], and Iserles, N�rsett and Sa� [7, p. 343])
satis�es Z(0;1)(Uf) 5 Z(0;1)(f). Now for n = 1; 2; : : :

(Uxn)(y) =
1

�(y)

Z 1
0

x
n+y�1

e
�x
dx =

�(y + n)

�(y)
= y(y + 1) � � � (y + n� 1)

(set (U1)(y) = 1).
For every polynomial p we have Z[0;1)(Up) 5 Z[0;1)(p). The operator

V = U
�1 is not of the form F (D).

These examples demonstrate that we do not yet understand the full class
of linear operators L of the form

(Lxn)(y) = y
n +

n�1X
k=0

bn;ky
k

which satisfy Z[0;1)(Lp) = Z[0;1)(p), for every polynomial p. All we can say
is that this class seems to be rather complicated.

Note that the S and U we constructed above are still based on TP kernels,
but they are not di�erence kernels (which is essentially what we obtained in
Section 2).
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Remark. The appropriate analogue of Theorems 1 and 3 on any �nite
interval is elementary. The only linear operator T of the form

Tx
n = x

n +

n�1X
k=0

bn;kx
k

satisfying Z[a;b](Tp) = Z[a;b](p) for every p 2 � on any �nite interval [a; b], is
the identity operator.

One proof of this result is by induction on n. For n = 1 and all c 2 [a; b]

we have T (x� c) = (x� c) + b1;0 and Z[a;b]

�
(x� c)� = 1. Thus Z[a;b]

�
(x� c)

+ b1;0

�
= 1 for all c 2 [a; b], implying b1;0 = 0. Assume, by induction, that

bm;k = 0 for all m 5 n� 1 and all relevant k. Then

T
�
(x� c)n

�
= (x� c)n +

n�1X
k=0

bn;kx
k
:

For c 2 [a; b], we again have Z[a;b]

�
(x� c)n

�
= n and thus Z[a;b]

�
T
�
(x� c)n

��
= n. There are now various methods of proving that bn;k = 0. For example,
take consecutively the (n� k)th derivative, k = 1; : : : ; n, to show that bn;n�k
= 0.
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