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 Cambridge University Press, 1999Approximation theory of the MLP modelin neural networksAllan PinkusDepartment of Mathematics,Technion { Israel Institute of Technology,Haifa 32000, IsraelE-mail: pinkus@tx.technion.ac.ilIn this survey we discuss various approximation-theoretic problems that arisein the multilayer feedforward perceptron (MLP) model in neural networks.The MLP model is one of the more popular and practical of the many neuralnetwork models. Mathematically it is also one of the simpler models. Nonethe-less the mathematics of this model is not well understood, and many of theseproblems are approximation-theoretic in character. Most of the research wewill discuss is of very recent vintage. We will report on what has been doneand on various unanswered questions. We will not be presenting practical(algorithmic) methods. We will, however, be exploring the capabilities andlimitations of this model.In the �rst two sections we present a brief introduction and overview of neuralnetworks and the multilayer feedforward perceptron model. In Section 3 wediscuss in great detail the question of density. When does this model havethe theoretical ability to approximate any reasonable function arbritrarilywell? In Section 4 we present conditions for simultaneously approximating afunction and its derivatives. Section 5 considers the interpolation capabilityof this model. In Section 6 we study upper and lower bounds on the order ofapproximation of this model. The material presented in Sections 3{6 treats thesingle hidden layer MLP model. In Section 7 we discuss some of the di�erencesthat arise when considering more than one hidden layer. The lengthy list ofreferences includes many papers not cited in the text, but relevant to thesubject matter of this survey.



144 A. PinkusCONTENTS1 On neural networks 1442 The MLP model 1463 Density 1504 Derivative approximation 1625 Interpolation 1656 Degree of approximation 1677 Two hidden layers 182References 1871. On neural networksIt will be assumed that most readers are pure and/or applied mathematicianswho are less than conversant with the theory of neural networks. As suchwe begin this survey with a very brief, and thus inadequate, introduction.The question `What is a neural network?' is ill-posed. From a quickglance through the literature one quickly realizes that there is no universallyaccepted de�nition of what the theory of neural networks is, or what itshould be. It is generally agreed that neural network theory is a collectionof models of computation very, very loosely based on biological motivations.According to Haykin (1994, p. 2):`A neural network is a massively parallel distributed processor that has a naturalpropensity for storing experiential knowledge and making it available for use. Itresembles the brain in two respects:1. Knowledge is acquired by the network through a learning process.2. Interneuron connection strengths known as synaptic weights are used to storethe knowledge.'This is a highly nonmathematical formulation. Let us try to be a bit lessheuristic. Neural network models have certain common characteristics. Inall these models we are given a set of inputs x = (x1; : : : ; xn) 2 Rn and someprocess that results in a corresponding set of outputs y = (y1; : : : ; ym) 2 Rm.The basic underlying assumption of our models is that the process is givenby some mathematical function, that is,y = G(x)for some function G. The function G may be very complicated. Moreimportantly, we cannot expect to be able to compute exactly the unknownG. What we do is choose our `candidate' F (for G) from some parametrizedset of functions using a given set of examples, that is, some inputs x andassociated `correct' outputs y = G(x), which we assume will help us tochoose the parameters. This is a very general framework. In fact it is



Approximation theory of the MLP model in neural networks 145still too general. Neural network models may be considered as particularchoices of classes of functions F (x;w) where the w are the parameters,together with various rules and regulations as well as speci�c proceduresfor optimizing the choice of parameters. Most people would also agree thata neural network is an input/output system with many simple processors,each having a small amount of local memory. These units are connected bycommunication channels carrying data. Most neural network models havesome sort of training rule, that is, they learn or are trained from a set ofexamples. There are many, many di�erent models of neural network. (Sarle(1998) lists over 40 di�erent recognized neural network models, and thereare a plethora of additional candidates.)Neural networks have emerged, or are emerging, as a practical technology,that is, they are being successfully applied to real world problems. Many oftheir applications have to do with pattern recognition, pattern classi�cation,or function approximation, which are all based on a large set of availableexamples (training set). According to Bishop (1995, p. 5):`The importance of neural networks in this context is that they o�er a very powerfuland very general framework for representing non-linear mappings from several inputvariables to several output variables, where the form of the mapping is governed bya number of adjustable parameters.'The nonlinearity of the neural network models presents advantages and dis-advantages. The price (and there always is a cost) is that the procedurefor determining the values of the parameters is now a problem in nonlinearoptimization which tends to be computationally intensive and complicated.The problem of �nding e�cient algorithms is of vital importance and thetrue utility of any model crucially depends upon its e�ciency. (However,this is not an issue we will consider in this survey.)The theory of neural nets has become increasing popular in the �elds ofcomputer science, statistics, engineering (especially electrical engineering),physics, and many more directly applicable areas. There are now four majorjournals in the �eld, as well as numerous more minor journals. These leadingjournals are IEEE Transactions on Neural Networks, Neural Computation,Neural Networks and Neurocomputing. Similarly, there are now dozens oftextbooks on the theory. In the references of this paper are listed only �vebooks, namely Haykin (1994), Bishop (1995), Ripley (1996), Devroye, Gyor�and Lugosi (1996), and Ellacott and Bos (1996), all of which have appearedin the last �ve years. The IEEE has generally sponsored (since 1987) twoannual conferences on neural networks. Their proceedings run to over 2000pages and each contains a few hundred articles and abstracts. A quick searchof Mathematical Reviews (MathSciNet) turned up a mere 1800 entries whenthe phrase `neural network' was entered (and you should realize that much ofthe neural network literature, including all the above-mentioned journals, is



146 A. Pinkusnot written for or by mathematicians and is not reviewed by MathematicalReviews). In other words, this is an explosively active research area anddeserves the attention of the readership of Acta Numerica. Initially therewas a de�nite lack of mathematical sophistication to the theory. It tendedto be more a collection of ad hoc techniques with debatable justi�cations.To a pure mathematician, such as the author, reading through some ofthe early literature in the �eld was an alien experience. In recent yearsthe professionals (especially statisticians) have established a more organizedframework for the theory.The reader who would like to acquire a more balanced and enlarged viewof the theory of neural networks is urged to peruse a few of the above-mentioned texts. An additional excellent source of information about neuralnetworks and its literature is the `frequently asked questions' (FAQs) of theUsenet newsgroup comp.ai.neural-nets: see Sarle (1998).This survey is not about neural networks per se, but about the approx-imation theory of the multilayer feedforward perceptron (MLP) model inneural networks. We will consider certain mathematical, rather than com-putational or statistical, problems associated with this widely used neuralnet model. More explicitly, we shall concern ourselves with problems of den-sity (when the models have at least the theoretical capability of providinggood approximations), degree of approximation (the extent to which theycan approximate, as a function of the number of parameters), interpolation,and related issues. Theoretical results, such as those we will survey, do notusually have direct applications. In fact they are often far removed frompractical considerations. Rather they are meant to tell us what is possibleand, sometimes equally importantly, what is not. They are also meant toexplain why certain things can or cannot occur, by highlighting their salientcharacteristics, and this can be very useful. As such we have tried to provideproofs of many of the results surveyed.The 1994 issue of Acta Numerica contained a detailed survey: `Aspects ofthe numerical analysis of neural networks' by S. W. Ellacott (1994). Only�ve years have since elapsed, but the editors have again opted to solicit asurvey (this time albeit with a slightly altered emphasis) related to neuralnetworks. This is not unwarranted. While almost half of that survey wasdevoted to approximation-theoretic results in neural networks, almost everyone of those results has been superseded. It is to be hoped that the samewill be said about this paper �ve years hence.2. The MLP modelOne of the more conceptually attractive of the neural network models isthe multilayer feedforward perceptron (MLP) model. In its most basic formthis is a model consisting of a �nite number of successive layers. Each layer



Approximation theory of the MLP model in neural networks 147consists of a �nite number of units (often called neurons). Each unit ofeach layer is connected to each unit of the subsequent (and thus previous)layer. These connections are generally called links or synapses. Information
ows from one layer to the subsequent layer (thus the term feedforward).The �rst layer, called the input layer, consists of the input. There are thenintermediate layers, called hidden layers. The resulting output is obtainedin the last layer, not surprisingly called the output layer. The rules andregulations governing this model are the following.1. The input layer has as output of its jth unit the (input) value x0j.2. The kth unit of the ith layer receives the output xij from each jthunit of the (i� 1)st layer. The values xij are then multiplied by someconstants (called weights) wijk and these products are summed.3. A shift �ik (called a threshold or bias) and then a �xed mapping �(called an activation function) are applied to the above sum and theresulting value represents the output xi+1;k of this kth unit of the ithlayer, that is, xi+1;k = � Xj wikjxij � �ik!:A priori one typically �xes, for whatever reasons, the activation function,the number of layers and the number of units in each layer. The next stepis to choose, in some way, the values of the weights wijk and thresholds�ik. These latter values are generally chosen so that the model behaveswell on some given set of inputs and associated outputs. (These are calledthe training set.) The process of determining the weights and thresholds iscalled learning or training. In the multilayer feedforward perceptron model,the basic learning algorithm is called backpropagation. Backpropagation isa gradient descent method. It is extremely important in this model and inneural network theory. We shall not detail this algorithm nor the numerousnumerical di�culties involved.We will classify multilayer feedforward perceptron models not by theirnumber of layers, but by their number of hidden layers, that is, the numberof layers excluding the input and output layer. As is evident, neural networktheory has its own terminology. Unfortunately it is also true that this termi-nology is not always consistent or logical. For example, the term multilayerperceptron is generically applied to the above model with at least one hiddenlayer. On the other hand the word perceptron was coined by F. Rosenblattfor the no hidden layer model with the speci�c activation function given bythe Heaviside function �o(t) = � 1; t � 0,0; t < 0:



148 A. PinkusThus �o either �res or does not �re and the breakpoint is some threshold�. (With this activation function the model is sometimes also referred to asthe McCulloch{Pitts model.)Mathematically a no (or zero) hidden layer perceptron network (some-times confusingly termed a single layer feedforward network) is given asfollows. Assume there are n inputs x = (x01; : : : ; x0n), and m outputsx = (x11; : : : ; x1m); then each output is given byx1k = � nXj=1 wjkx0j � �k!; k = 1; : : : ; m; (2.1)for some choice of �, wjk and �k , j = 1; : : : ; n, k = 1; : : : ; m. This no hiddenlayer perceptron network is generally no longer used, except in problemsof linear separation. There is a simple mathematical rationale for this. Afunction of the form (2.1) is constant along certain parallel hyperplanes andthus is limited in what it can do. For example, assume m = 1 (one output),n = 2, and � is any increasing function. If the input is x = (x1; x2) and theoutput is y, then y = � (w1x1 + w2x2 � �) :Assume we are given four inputs x1, x2, x3 and x4, no three of which lie ona straight line. Then, as is easily seen, there are output values which cannotbe interpolated or approximated well. For example, assume x1 and x2 lie onopposite sides of the line through x3 and x4. Set y1 = y2 = 1, y3 = y4 = 0.Then we cannot solveyi = � �w1xi1 + w2xi2 � �� ; i = 1; : : : ; 4;for any choice of w1; w2 and �. In fact the di�erence between at least oneof the yi and the associated output will be at least 1=2. This is totallyunacceptable if one wishes to build a network that can approximate well anyreasonable function, or classify points according to di�erent criteria. Withthe Heaviside activation function and no hidden layer, two sets of pointscan be separated (classi�ed) by this model if and only if they are linearlyseparable. To do more, hidden layers are necessary. The problem of beingable to arbitrarily separate N generic points in Rn into two sets by use of aone hidden layer perceptron model with Heaviside activation function (andone output) was considered by Baum (1988). He showed that the problem issolvable if one uses at least [N=n] units in the hidden layer. This model canbe used with both continuously valued and discrete inputs. Baum considersthe latter; we will consider the former. We will prove that hidden layers andnonlinearity (or, to be more precise, nonpolynomiality) of the activationfunction make for models that have the capability of approximating (andinterpolating) arbitrarily well.



Approximation theory of the MLP model in neural networks 149The model presented above permits generalization, and this can and oftenis done in a number of ways. The activation function may change from layerto layer (or from unit to unit). We can replace the simple linearity at eachunit (i.e., Pj wijkxij) by some more complicated function of the xij . Thearchitecture may be altered to allow for di�erent links between units of dif-ferent layers (and perhaps also of the same layer). These are just a few of themany, many possible generalizations. As the mathematical analysis of themultilayer perceptron model is far from being well understood, we will con-sider only this basic model, with minor modi�cations. For example, whileit is usual in the multilayer perceptron model to apply the same activationfunction at each hidden layer, it is often the case, and we will follow thisconvention here, that there be no activation function or threshold appliedat the output layer. There may be various reasons for this, from a practicalpoint of view, depending on the problem considered. From a mathematicalperspective, applying an activation function to the output layer, especially ifthe activation function is bounded, is unnecessarily restrictive. Another sim-pli�cation we will make is to consider models with only one output (unlessotherwise noted). This is no real restriction and will tremendously simplifyour notation.With the above modi�cations (no activation function or threshold appliedto the output layer and only one output), we write the output y of a singlehidden layer perceptron model with r units in the hidden layer and inputx = (x1; : : : ; xn) as y = rXi=1 ci� nXj=1 wijxj � �i!:Here wij is the weight between the jth unit of the input and the ith unit inthe hidden layer, �i is the threshold at the ith unit of the hidden layer, andci is the weight between the ith unit of the hidden layer and the output. Wewill generally write this more succinctly asy = rXi=1 ci�(wi � x� �i);where w �x =Pnj=1wjxj is the standard inner product. We can also expressthe output y of a two hidden layer perceptron model with r units in the �rsthidden layer, s units in the second hidden layer, and input x = (x1; : : : ; xn).It is y = sXk=1 dk� rXi=1 cik�(wik � x� �ik)� 
k!:That is, we iterate the one hidden layer model. We will not write out theexact formula for the output of this model with more hidden layers.



150 A. PinkusSome common choices for activation functions � (all may be found in theliterature) are the following.1. The Heaviside function mentioned above, that is, �(t) = �[0;1)(t).This is sometimes referred to in the neural network literature as thethreshold function.2. The logistic sigmoid given by�(t) = 11 + e�t :3. �(t) = tanh(t=2), which is, up to a constant, just a shift of the logisticsigmoid.4. The piecewise linear function of the form�(t) = ( 0; t � �1,(t+ 1)=2; �1 � t � 1,1; 1 � t:5. The Gaussian sigmoid given by�(t) = 1(2�)1=2 Z t�1 e�y2=2 dy:6. The arctan sigmoid given by�(t) = 1� arctan(t) + 12 :The logistic sigmoid is often used because it is well suited to the demandsof backpropagation. It is a C2 function whose derivative is easily calculated.Note that all the above functions are bounded (generally increasing from0 to 1). The term sigmoidal is used for the class of activation functionssatisfying limt!�1 �(t) = 0 and limt!1 �(t) = 1. However, there is acertain lack of consistency in the terminology. Some authors also demandthat � be continuous and/or monotonic (or even strictly monotonic) on allof R. Others make no such demands. We shall try to be explicit in what wemean when we use the term.3. DensityIn this section we will consider density questions associated with the singlehidden layer perceptron model. That is, we consider the setM(�) = spanf�(w � x� �) : � 2 R;w 2 Rng;and ask the following question. For which � is it true that, for any f 2C(Rn), any compact subset K ofRn, and any " > 0, there exists a g 2M(�)such that maxx2K jf(x)� g(x)j < " ?



Approximation theory of the MLP model in neural networks 151In other words, when do we have density of the linear space M(�) in thespace C(Rn), in the topology of uniform convergence on compacta (compactsets)? In fact we shall also restrict the permissible set of weights w andthresholds �. To set terminology, we shall say that � has the density propertyif M(�) is dense in C(Rn) in the above topology. It should be noted thatthis norm is very strong. If � is any nonnegative �nite Borel measure, withsupport in some compact set K, then C(K) is dense in Lp(K; �) for any1 � p <1. Thus the results of this section extend also to these spaces.In the renaissance of neural net theory that started in the mid-1980s,it was clearly understood that this density question, whether for the singlehidden or any number of hidden layer perceptron model, was of fundamentalimportance to the theory. Density is the theoretical ability to approximatewell. Density does not imply a good, e�cient scheme for approximation.However, a lack of density means that it is impossible to approximate a largeclass of functions, and this e�ectively precludes any scheme based thereonfrom being in the least useful. This is what killed o� the e�cacy of the nohidden layer model. Nonetheless it should be understood that density doesnot imply that one can approximate well to every function fromMr(�) = ( rXi=1 ci�(wi � x� �i) : ci; �i 2 R;wi 2 Rn);for some �xed r. On the contrary, there is generally a lower bound (for anyreasonable set of functions) on the degree to which one can approximateusing Mr(�), independent of the choice of �. (We consider this at somelength in Section 6.) This is to be expected and is natural. It is, in a sense,similar to the situation with approximation by polynomials. Polynomialsare dense in C[0; 1] but polynomials of any �xed degree are rather sparse.(Note also that the sets Mr(�) are not subspaces. However, they do havethe important property thatMr(�) +Ms(�) =Mr+s(�).)Hecht-Nielsen (1987) was perhaps the �rst to consider the density problemfor the single hidden layer perceptron model. He premised his observationson work based on the Kolmogorov Superposition Theorem (see Section 7).While many researchers subsequently questioned the exact relevance of thisresult to the above model, it is certainly true that this paper very much stim-ulated interest in this problem. In one of the �rst proceedings of the IEEE onthe topic of neural networks, two papers appeared which discussed the den-sity problem. Gallant and White (1988) constructed a speci�c continuous,nondecreasing sigmoidal function from which it was possible to obtain anytrigonometric (Fourier) series. As such their activation function, which theycalled a cosine squasher, had the density property. Irie and Miyake (1988)constructed an integral representation for any f 2 L1(Rn) using a kernel ofthe form �(w � x � �) where � was an arbitrary function in L1(R). This



152 A. Pinkusallowed an interpretation in the above framework (but of course restrictedto � 2 L1(R)).In 1989 there appeared four much cited papers which considered the den-sity problem for general classes of activation functions. They are Carroll andDickinson (1989), Cybenko (1989), Funahashi (1989), and Hornik, Stinch-combe and White (1989). Carroll and Dickinson (1989) used a discretizedinverse Radon transform to approximate L2 functions with compact sup-port in the L2 norm, using any continuous sigmoidal function as an activa-tion function. The main result of Cybenko (1989) is the density property,in the uniform norm on compacta, for any continuous sigmoidal function.(Cybenko does not demand monotonicity in his de�nition of sigmoidality.)His method of proof uses the Hahn{Banach Theorem and the representa-tion (Riesz Representation Theorem) of continuous linear functionals onthe space of continuous functions on a compact set. Funahashi (1989) (in-dependently of Cybenko (1989)) proves the density property, in the uni-form norm on compacta, for any continuous monotone sigmoidal function.He notes that, for � continuous, monotone and bounded, it follows that�(�+ �) � �(� + �) 2 L1(R) for any �, �. He then applies the previouslymentioned result of Irie and Miyake (1988). Hornik, Stinchcombe and White(1989), unaware of Funahashi's paper, prove very much the same result.However, they demand that their activation function be only monotone andbounded, that is, they permit noncontinuous activation functions. Theirmethod of proof is also totally di�erent, but somewhat circuitous. They�rst allow sums and products of activation functions. This permits them toapply the Stone{Weierstrass Theorem to obtain density. They then provethe desired result, without products, using cosine functions and the abilityto write products of cosines as linear combinations of cosines.There were many subsequent papers which dealt with the density problemand some related issues. We quickly review some, but not all, of them.Stinchcombe and White (1989) prove that � has the density propertyfor every � 2 L1(R) with R1�1 �(t) dt 6= 0. Cotter (1990) considers di�er-ent types of models and activation functions (non-sigmoidal) for which theStone{Weierstrass Theorem can be employed to obtain density, for instance�(t) = et, and others. Jones (1990) shows, using ridge functions (which weshall soon de�ne), that to answer the question of density it su�ces to con-sider only the univariate problem. He then proves, by constructive meth-ods, that a bounded (not necessarily monotone or continuous) sigmoidalactivation function su�ces. Stinchcombe and White (1990) also reduce thequestion of density to the univariate case and then consider various acti-vation functions (not necessarily sigmoidal) such as piecewise linear (withat least one knot), a subset of polynomial splines, and a subset of analyticfunctions. They also consider the density question when bounding the setof permissible weights and thresholds. Hornik (1991) proves density for any



Approximation theory of the MLP model in neural networks 153continuous bounded and nonconstant activation function, and also in othernorms. Itô, in a series of papers (Itô 1991a, 1991b and 1992) studies theproblem of density using monotone sigmoidal functions, with only weightsof norm 1. He also considers conditions under which one obtains uniformconvergence on all of Rn. Chui and Li (1992) constructively prove densitywhere the activation function is continuous and sigmoidal, with weights andthresholds taking only integer values. Mhaskar and Micchelli (1992) extendthe density result to what they call kth degree sigmoidal functions. Theyprove that if � is continuous, bounded by some polynomial of degree k onall of R, and limt!�1 �(t)tk = 0; limt!1 �(t)tk = 1;then density holds if and only if � is not a polynomial. Other results maybe found in Light (1993), Chen and Chen (1993, 1995), Chen, Chen and Liu(1995), Attali and Pag�es (1997) and Burton and Dehling (1998).As we have noted, a variety of techniques were used to attack a problemwhich many considered important and di�cult. The solution to this prob-lem, however, turns out to be surprisingly simple. Leshno, Lin, Pinkus andSchocken (1993) prove that the necessary and su�cient condition for anycontinuous activation function to have the density property is that it notbe a polynomial. Also considered in that paper are some su�cient condi-tions on noncontinuous activation functions which also imply density. Forsome reason the publication of this article was delayed and the submissiondate incorrectly reported. In a subsequent issue there appeared a paper byHornik (1993) which references Leshno, Lin, Pinkus and Schocken (1993)and restates and reproves their results in a slightly altered form. In Pinkus(1996) a somewhat di�erent proof is given and it is also noted that the char-acterization of continuous activation functions with the density property canbe essentially found in Schwartz (1944) (see also Edwards (1965, pp. 130{133)). The problem is in fact very much related to that of characterizingtranslation (and dilation) invariant subspaces of C(R), in the topology ofuniform convergence on compacta.As we have said, the main theorem we will prove is the following.Theorem 3.1 Let � 2 C(R). ThenM(�) is dense in C(Rn), in the topol-ogy of uniform convergence on compacta, if and only if � is not a polynomial.If � is a polynomial, then density cannot possibly hold. This is immediate.If � is a polynomial of degree m, then, for every choice ofw 2 Rn and � 2 R,�(w � x � �) is a (multivariate) polynomial of total degree at most m, andthus M(�) is the space of all polynomials of total degree m and does notspan C(Rn). The main content of this theorem is the converse result.



154 A. PinkusWe shall prove considerably more than is stated in Theorem 3.1. Weshall show that we can, in diverse cases, restrict the permissible weightsand thresholds, and also enlarge the class of eligible �, while still obtainingthe desired density. The next few propositions are amalgamations of resultsand techniques in Leshno, Lin, Pinkus and Schocken (1993) and Schwartz(1944).We start the analysis by de�ning ridge functions. Ridge functions aremultivariate functions of the formg(a1x1 + � � �+ anxn) = g(a � x)where g : R! Rand a = (a1; : : : ; an) 2 Rnnf0g is a �xed direction. In otherwords, they are multivariate functions constant on the parallel hyperplanesa � x = c, c 2 R. Ridge functions have been considered in the study ofhyperbolic partial di�erential equations (where they go under the name ofplane waves), computerized tomography, projection pursuit, approximationtheory, and neural networks (see, for instance, Pinkus (1997) for furtherdetails).Set R = spanfg(a � x) : a 2 Rn; g:R! Rg:Ridge functions are relevant in the theory of the single hidden layer per-ceptron model since each factor �(w � x � �) is a ridge function for everychoice of �, w and �. It therefore immediately follows that a lower boundon the extent to which this model with r units in the single hidden layer canapproximate any function is given by the order of approximation from themanifold Rr = ( rXi=1 gi(ai � x) : ai 2 Rn; gi:R! R; i = 1; : : : ; r):(We return to this fact in Section 6.) In addition, if ridge functions are notdense in C(Rn), in the above topology, then it would not be possible forM(�) to be dense in C(Rn) for any choice of �. But ridge functions do havethe density property. This is easily seen. R contains all functions of theform cos(a � x) and sin(a � x). These functions can be shown to be dense onany compact subset of C(Rn). Another dense subset of ridge functions isgiven by ea�x. Moreover, the setspanf(a � x)k : a 2 Rn; k = 0; 1; : : :gcontains all polynomials and thus is dense. In fact we have the followingresult due to Vostrecov and Kreines (1961) (see also Lin and Pinkus (1993)),which tells us exactly which sets of directions are both su�cient and neces-sary for density. We will use this result.



Approximation theory of the MLP model in neural networks 155Theorem 3.2. (Vostrecov and Kreines 1961) The set of ridge func-tions R(A) = spanfg(a � x) : g 2 C(R); a 2 Agin dense in C(Rn), in the topology of uniform convergence on compacta, ifand only if there is no nontrivial homogeneous polynomial that vanishes onA.Because of the homogeneity of the directions (allowing a direction a isequivalent to allowing all directions �a for every real �, since we vary overall g 2 C(R)), it in fact su�ces to consider directions normalized to lie onthe unit ball Sn�1 = fy : kyk2 = (y21 + � � �+ y2n)1=2 = 1g:Theorem 3.2 says thatR(A) is dense in C(Rn), forA � Sn�1, if no nontrivialhomogeneous polynomial has a zero set containing A. For example, if Acontains an open subset of Sn�1 then no nontrivial homogeneous polynomialvanishes on A. In what follows we will always assume that A � Sn�1.The next proposition is a simple consequence of the ridge function form ofour problem, and immediately reduces our discussion from Rn to the moretractable univariate R.In what follows, �, � will be subsets of R. By ��A we mean the subsetof Rn given by ��A = f�a : � 2 �; a 2 Ag:Proposition 3.3 Assume �, � are subsets of R for whichN (�; �;�) = spanf�(�t� �) : � 2 �; � 2 �gis dense in C(R), in the topology of uniform convergence on compacta.Assume in addition that A � Sn�1 is such that R(A) is dense in C(Rn), inthe topology of uniform convergence on compacta. ThenM(�; �� A;�) = spanf�(w � x� �) : w 2 ��A; � 2 �gis dense in C(Rn), in the topology of uniform convergence on compacta.Proof. Let f 2 C(K) for some compact set K in Rn. Since R(A) is densein C(K), given " > 0 there exist gi 2 C(R) and ai 2 A, i = 1; : : : ; r (somer) such that ����f(x)� rXi=1 gi(ai � x)���� < "2for all x 2 K. Since K is compact, fai � x : x 2 Kg � [�i; �i] for some�nite interval [�i; �i], i = 1; : : : ; r. Because N (�; �;�) is dense in C[�i; �i],i = 1; : : : ; r, there exist constants cij 2 R,�ij 2 � and �ij 2 �, j = 1; : : : ; mi,



156 A. Pinkusi = 1; : : : ; r, for which����gi(t)� miXj=1 cij�(�ijt� �ij)���� < "2rfor all t 2 [�i; �i] and i = 1; : : : ; r. Thus����f(x)� rXi=1 miXj=1 cij�(�ijai � x� �ij)���� < "for all x 2 K. 2Proposition 3.3 permits us to focus on R. We �rst prove density for arestricted class of activation functions.Proposition 3.4 Let � 2 C1(R) and assume � is not a polynomial. ThenN (�;R;R) is dense in C(R).Proof. It is well known (in fact it is a well-known problem given to advancedmath students) that, if � 2 C1 on any open interval and is not a polynomialthereon, then there exists a point ��o in that interval for which �(k)(��o) 6=0 for all k = 0; 1; 2; : : : . The earliest reference we have found to this resultis Corominas and Sunyer Balaguer (1954). It also appears in the moreaccessible Donoghue (1969, p. 53), but there exist simpler proofs than thatwhich appears there.Since � 2 C1(R), and [�((�+ h)t � �o)� �(�t� �o)]=h 2 N (�;R;R) forall h 6= 0, it follows thatdd��(�t� �o)����=0 = t�0(��o)is contained in N (�;R;R), the closure ofN (�;R;R). By the same argumentdkd�k �(�t� �o)����=0 = tk�(k)(��o)is contained in N (�;R;R) for any k. Since �(k)(��o) 6= 0, k = 0; 1; 2; : : : ;the set N (�;R;R) contains all monomials and thus all polynomials. By theWeierstrass Theorem this implies that N (�;R;R) is dense in C(K) for everycompact K � R. 2Let us consider this elementary proof in more detail. What properties ofthe function � and of the sets � and � of weights and thresholds, respec-tively, did we use? In fact we only really needed to show thatdkd�k �(�t� �o)����=0 = tk�(k)(��o)is contained in N (�; �;�) for every k, and that �(k)(��o) 6= 0 for all k. It



Approximation theory of the MLP model in neural networks 157therefore su�ces that � be any set containing a sequence of values tendingto zero, and � 2 C1(�), where � contains an open interval on which � isnot a polynomial. Let us restate Proposition 3.4 in this more general form.Corollary 3.5 Let � be any set containing a sequence of values tendingto zero, and let � be any open interval. Let � : R ! R be such that� 2 C1(�), and � is not a polynomial on �. Then N (�; �;�) is dense inC(R).We also note that the method of proof of Proposition 3.4 shows that,under these conditions, in the closure of the linear combination of k + 1shifts and dilations of � are the space of polynomials of degree k. We willuse this fact in Section 6. As such we state it formally here.Corollary 3.6 LetNr(�) = ( rXi=1 ci�(�it � �i) : ci; �i; �i 2 R):If � is any open interval and � 2 C1(�) is not a polynomial on �, thenNr(�) contains �r�1, the linear space of algebraic polynomials of degree atmost r � 1.We now consider how to weaken our smoothness demands on �. Wedo this in two steps. We again assume that � = � = R. However, thisis not necessary and, following the proof of Proposition 3.8, we state theappropriate analogue of Corollary 3.5.Proposition 3.7 Let � 2 C(R) and assume � is not a polynomial. ThenN (�;R;R) is dense in C(R).Proof. Let � 2 C10 (R), that is, C1(R) with compact support. For eachsuch � set ��(t) = Z 1�1 �(t� y)�(y) dy;that is, �� = � � � is the convolution of � and �. Since �; � 2 C(R) and �has compact support, the above integral converges for all t, and as is easilyseen (taking Riemann sums) �� is contained in the closure of N (�; f1g;R).Furthermore, �� 2 C1(R).It also follows that N (��;R;R) is contained in N (�;R;R) since��(�t� �) = Z 1�1 �(�t� � � y)�(y) dy;for each � 2 R. Because �� 2 C1(R) we have, from the method of proofof Proposition 3.4, that tk�(k)� (��) is in N (��;R;R) for all � 2 R and all k.



158 A. PinkusNow if N (�;R;R) is not dense in C(R) then tk is not in N (�;R;R) for somek. Thus tk is not in N (��;R;R) for each � 2 C10 (R). This implies that�(k)� (��) = 0 for all � 2 R and each � 2 C10 (R). Thus �� is a polynomialof degree at most k � 1 for each � 2 C10 (R).It is well known that there exist sequences of �n 2 C10 (R) for which ��nconverges to � uniformly on any compact set in R. We can, for example, takewhat are called molli�ers (see, for instance, Adams (1975, p. 29)). Polyno-mials of a �xed degree form a (closed) �nite-dimensional linear subspace.Since ��n is a polynomial of degree at most k � 1 for every �n, it thereforefollows that � is a polynomial of degree at most k� 1. This contradicts ourassumption. 2We �rst assumed � 2 C1(R) and then showed how to obtain the sameresult for � 2 C(R). We now consider a class of discontinuous �. Weprove that the same result (density) holds for any � that is bounded andRiemann-integrable on every �nite interval. (By a theorem of Lebesgue,the property of Riemann-integrability for such functions is equivalent todemanding that the set of discontinuities of � has Lebesgue measure zero:see, for instance, Royden (1963, p. 70).) It is not true that, for arbitrary�, the space N (�;R;R) is dense in C(R) if � is not a polynomial, withoutsome smoothness conditions on �.Proposition 3.8 Assume � : R! R is bounded and Riemann-integrableon every �nite interval. Assume � is not a polynomial (almost everywhere).Then N (�;R;R) is dense in C(R).Proof. It remains true that, for each � 2 C10 (R),��(t) = Z 1�1 �(t� y)�(y) dyis in C1(R). Furthermore, for the ��n as de�ned in Proposition 3.7 we havethat limn!1 k� � ��nkLp(K) = 0for every 1 � p < 1 and any compact K (see, for instance, Adams (1975,p. 30)). As such, if ��n is a polynomial of degree at most k � 1 for each n,then � is (almost everywhere) also a polynomial of degree at most k � 1.Thus the proof of this proposition exactly follows the method of proof ofProposition 3.7 if we can show that �� is in the closure of N (�; f1g;R) foreach � 2 C10 (R). This is what we now prove.Let � 2 C10 (R) and assume that � has support in [��; �]. Setyi = �� + 2i�m ; i = 0; 1; : : : ; m;



Approximation theory of the MLP model in neural networks 159�i = [yi�1; yi], and �yi = yi � yi�1 = 2�=m, i = 1; : : : ; m. By de�nition,mXi=1 �(t� yi)�(yi)�yi 2 N (�; f1g;R)for each m. We will prove that the above sum uniformly converges to �� onevery compact subset K of R.By de�nition,������(t)� mXi=1 �(t� yi)�(yi)�yi����= mXi=1 Z�i [�(t� y)�(y)� �(t� yi)�(yi)] dy= mXi=1 Z�i [�(t� y)� �(t� yi)]�(y) dy+ mXi=1 Z�i �(t� yi)[�(y)� �(yi)] dy:Since � is bounded on K � [��; �], and � is uniformly continuous on[��; �], it easily follows thatlimm!1 mXi=1 Z�i �(t� yi)[�(y)� �(yi)] dy = 0:Now ���� mXi=1 Z�i [�(t� y)� �(t� yi)]�(y) dy����� k�kL1[��;�] mXi=1 � supy2�i �(t� y)� infy2�i �(t� y)�2�m :Since � is Riemann-integrable on K � [��; �], it follows thatlimm!1 mXi=1 � supy2�i �(t� y)� infy2�i �(t� y)�2�m = 0:This proves the result. 2It is not di�cult to check that the above conditions only need to holdlocally, as in Corollary 3.5.Corollary 3.9 Let � be any set containing a sequence of values tendingto zero, and let � be any open interval. Assume � : R! R is such that



160 A. Pinkus� is bounded and Riemann-integrable on � and not a polynomial (almosteverywhere) on �. Then N (�; �;�) is dense in C(R).The above results should not be taken to mean that we recommend usingonly a minimal set of weights and thresholds. Such a strategy would bewrong.In the cases thus far considered it was necessary, because of the method ofproof, that we allow dilations (i.e., the set �) containing a sequence tendingto zero. This is in fact not necessary. We have, for example, the followingsimple result, which is proven by classical methods.Proposition 3.10 Assume � 2 C(R)\ L1(R), or � is continuous, nonde-creasing and bounded (but not the constant function). Then N (�; f1g;R)is dense in C(R).Proof. Assume � 2 C(R)\ L1(R). Continuous linear functionals on C(R)are represented by Borel measures of �nite total variation and compactsupport. If N (�; f1g;R) is not dense in C(R), then there exists such anontrivial measure � satisfyingZ 1�1 �(t� �) d�(t) = 0for all � 2 R. Both � and � have `nice' Fourier transforms. Since the aboveis a convolution this implies b�(!)b�(!) = 0for all ! 2 R. Now b� is an entire function (of exponential type), while b�is continuous. Since b� must vanish where b� 6= 0, it follows that b� = 0 andthus � = 0. This is a contradiction and proves the result.If � is continuous, nondecreasing and bounded (but not the constant func-tion), then �(�+a)��(�) is in C(R)\L1(R) (and not the zero function) forany �xed a 6= 0. We can now apply the result of the previous paragraph toobtain the desired result. 2The above proposition does not begin to tell the full story. A more formalstudy of N (�; f1g;R) was made by Schwartz (1947), where he introducedthe following de�nition of the class of mean-periodic functions.De�nition. A function f 2 C(Rn) is said to be mean-periodic ifspanff(x� a) : a 2 Rngis not dense in C(Rn), in the topology of uniform convergence on compacta.Translation-invariant subspaces (such as the above space) have been muchstudied in various norms (more especially L2 and L1). The study of mean-periodic functions was an attempt to provide a parallel analysis for the space



Approximation theory of the MLP model in neural networks 161C(Rn). Unfortunately this subject is still not well understood for n > 1.Luckily we are interested in the univariate case and Schwartz (1947) provideda thorough analysis of such spaces (see also Kahane (1959)). The theory ofmean-periodic functions is, unfortunately, too complicated to present herewith proofs. The central result is that subspacesspanff(t � a) : a 2 Rgspanned by mean-periodic functions in C(R) are totally characterized bythe functions of the form tme
t which are contained in their closure, where
 2 C . (These values 
 determine the spectrum of f . Note that if 
 is inthe spectrum, then so is 
.) From this fact follows this next result.Proposition 3.11 Let � 2 C(R), and assume that � is not a polynomial.For any � that contains a sequence tending to a �nite limit point, the setN (�; �;R) is dense in C(R).Proof. Let � 2 �nf0g. If �(�t) is not mean-periodic thenspanf�(�t� �) : � 2 Rgis dense in C(R), and we are �nished. Assume not. Since � is not a poly-nomial the above span contains, in its closure, tme
t for some nonnegativeinteger m and 
 2 C nf0g. (We may assume m = 0 since, by taking a �nitelinear combination of shifts, it follows that e
t is also contained in the aboveclosure.) Thus the closure ofspanf�(�t� �) : � 2 R; � 2 �gcontains e(
�=�)t for every � 2 �.We claim that spanfe(
�=�)t : � 2 �gis dense in C(R) if � has a �nite limit point. This is a well-known result.One can prove it by the method of proof of Proposition 3.4. Alternatively,if the above span is not dense thenZ 1�1 e(
�=�)t d�(t) = 0; � 2 �;for some nontrivial Borel measure � of �nite total variation and compactsupport. Now g(z) = Z 1�1 ezt d�(t)is an entire function on C . But g vanishes on the set f
�=� : � 2 �g, andthis set contains a sequence tending to a �nite limit point. This implies thatg is identically zero, which in turn implies that � is the zero measure. Thiscontradiction proves the density. 2



162 A. PinkusRemark. As may be noted from the method of proof of Proposition 3.11,the condition on � can be replaced by the demand that � not be containedin the zero set of a nontrivial entire function.We should also mention that Schwartz (1947, p. 907) proved the followingresult.Proposition 3.12 Let � 2 C(R). If � 2 Lp(R), 1 � p < 1, or � isbounded and has a limit at in�nity or minus in�nity, but is not the constantfunction, then � is not mean-periodic.Thus, in the above cases N (�; f�g;R) is dense in C(R) for any � 6= 0.Remark. If the input is preprocessed, then, rather than working directlywith the input x = (x1; : : : ; xn), this data is �rst converted to h(x) =(h1(x); : : : ; hm(x)) for some given �xed continuous functions hj 2 C(Rn),j = 1; : : : ; m. SetMh(�) = spanf�(w � h(x)� �) : w 2 Rm; � 2 Rg:Theorem 3.1 is still valid in this setting if and only if h separates points, thatis, xi 6= xj implies h(xi) 6= h(xj) (see Lin and Pinkus (1994)). Analoguesof the other results of this section depend upon the explicit form of h.4. Derivative approximationIn this section we consider conditions under which a neural network in thesingle hidden layer perceptron model can simultaneously and uniformly ap-proximate a function and various of its partial derivatives. This fact isrequisite in several algorithms.We �rst introduce some standard multivariate notation. We letZn+ denotethe lattice of nonnegative multi-integers in Rn. Form = (m1; : : : ; mn) 2Zn+,we set jmj = m1 + � � �+mn, xm = xm11 � � �xmnn , andDm = @ jmj@xm11 � � �@xmnn :If q is a polynomial, then by q(D) we mean the di�erential operator givenby q� @@x1 ; : : : ; @@xn�:We also have the usual ordering on Zn+, namely m1 � m2 if m1i � m2i ,i = 1; : : : ; n.We say f 2 Cm(Rn) if Dkf 2 C(Rn) for all k �m, k 2Zn+. We setCm1;:::;ms(Rn) = s\j=1Cmj(Rn);



Approximation theory of the MLP model in neural networks 163and, as a special case,Cm(Rn) = \jmj=mCm(Rn) = ff : Dkf 2 C(Rn) for all jkj � mg:We recall thatM(�) = spanf�(w � x� �) : w 2 Rn; � 2 Rg:We say that M(�) is dense in Cm1;:::;ms(Rn) if, for any f 2 Cm1;:::;ms(Rn),any compact K of Rn, and any " > 0, there exists a g 2 M(�) satisfyingmaxx2K jDkf(x)�Dkg(x)j< ";for all k 2Zn+ for which k �mi for some i.We will outline a proof (skipping over various details) of the followingresult.Theorem 4.1 Let mi 2 Zn+, i = 1; : : : ; s, and set m = maxfjmij : i =1; : : : ; sg. Assume � 2 Cm(R) and � is not a polynomial. Then M(�) isdense in Cm1;:::;ms(Rn).This density question was �rst considered by Hornik, Stinchcombe andWhite (1990). They showed that, if �(m) 2 C(R)\L1(R), thenM(�) is densein Cm(Rn). Subsequently Hornik (1991) generalized this to � 2 Cm(R)which is bounded, but not the constant function. Hornik uses a functionalanalytic method of proof. With suitable modi�cations his method of proofcan be applied to prove Theorem 4.1. Itô (1993) reproves Hornik's result, butfor � 2 C1(R) which is not a polynomial. His method of proof is di�erent.We essentially follow it here. This approach is very similar to the approachtaken in Li (1996) where Theorem 4.1 can e�ectively be found. Other papersconcerned with this problem are Cardaliaguet and Euvrard (1992), Gallantand White (1992), Itô (1994b), Mhaskar and Micchelli (1995) and Attaliand Pag�es (1997). Some of these papers contain generalizations to densityin other norms, and related questions.Proof. Polynomials are dense in Cm1;:::;ms(Rn). This may be shown in anumber of ways. One proof of this fact is to be found in Li (1996). Ittherefore su�ces to prove that one can approximate polynomials in theappropriate norm.If h is any polynomial on Rn, then h can be represented in the formh(x) = rXi=1 pi(ai � x) (4.1)for some choice of r, ai 2 Rn, and univariate polynomials pi, i = 1; : : : ; r.



164 A. PinkusA precise proof of this fact is the following. (This result will be used againin Section 6, so we detail its proof here.) Let Hk denote the linear space ofhomogeneous polynomials of degree k (in Rn), and Pk = [ks=0Hs the linearspace of polynomials of degree at most k. Set r = �n�1+kk � = dimHk. Letm1;m2 2 Zn+, jm1j = jm2j = k. Then Dm1xm2 = Cm1�m1;m2, for someeasily calculated Cm1. This implies that each linear functional L on Hkmay be represented by some q 2 Hk viaL(p) = q(D)pfor each p 2 Hk. Now (a �x)k 2 Hk and Dm(a �x)k = k!am if jmj = k. Thusq(D)(a � x)k = k!q(a).Since r = dimHk, there exist r points a1; : : : ; ar such that dimHkjA = rfor A = fa1; : : : ; arg. We claim that f(ai � x)kgri=1 span Hk. If not, thereexists a nontrivial linear functional that annihilates each (ai � x)k. Thussome nontrivial q 2 Hk satis�es0 = q(D)(ai � x)k = k!q(ai); i = 1; : : : ; r:This contradicts our choice of A, hence f(ai �x)kgri=1 span Hk. It also followsthat f(ai �x)sgri=1 spans Hs for each s = 0; 1; : : : ; k. If not, then there existsa nontrivial q 2 Hs that vanishes on A. But, for any p 2 Hk�s, the functionpq 2 Hk vanishes on A, which is a contradiction. ThusPk = spanf(ai � x)s : i = 1; : : : ; r; s = 0; 1; : : : ; kg:Let �k denote the linear space of univariate polynomials of degree at mostk. It therefore follows thatPk = ( rXi=1 pi(ai � x) : pi 2 �k; i = 1; : : : ; r):Thus h may be written in the form (4.1). Hence it follows that it su�ces(see the proof of Proposition 3.3) to prove that one can approximate eachunivariate polynomial p on any �nite interval [�; �] fromN (�;R;R) = spanf�(�t� �) : �; � 2 Rgin the norm kfkCm[�;�] = maxk=0;1;:::;m maxt2[�;�] jf (k)(t)j:Since � 2 Cm(R) is not a polynomial we have, from the results of Sec-tion 3, that N (�(m);R;R) is dense in C(R). Let f 2 Cm(R). Then, given" > 0, there exists a g 2 N (�;R;R) such thatkf (m) � g(m)kCm[�;�] < ":



Approximation theory of the MLP model in neural networks 165If every polynomial of degree at mostm�1 is in the closure of N (�;R;R)with respect to the norm k � kCm[�;�], then, by choosing a polynomial psatisfying p(k)(�) = (f � g)(k)(�); k = 0; 1; : : : ; m� 1;it follows, integratingm times, that g+p is close to f in the norm k�kCm[�;�].This follows by iterating the inequalityjf (k�1)(x)� (g + p)(k�1)(x)j = ���� Z x� [f (k)(t)� (g + p)(k)(t)] dt����� (� � �) max��t�� jf (k)(t)� (g + p)(k)(t)j:We have thus reduced our problem to proving that each of 1; t; : : : ; tm�1is in the closure of N (�;R;R) with respect to the norm k � kCm[�;�].Because � 2 Cm(R) it follows from the method of proof of Proposition 3.4that for k � m � 1, the function tk�(k)(��o) is contained in the closure ofN (�;R;R) with respect to the usual uniform norm k � kC[�;�] on any [�; �](and since � is not a polynomial there exists a �o for which �(k)(��o) 6=0). A detailed analysis, which we will skip, proves that tk, k � m � 1, iscontained in the closure of N (�;R;R) with respect to the more stringentnorm k � kCm[�;�]. 2In the above we have neglected the numerous possible nuances which par-allel those contained in Section 3 (see, for instance, Corollary 3.5, Proposi-tions 3.10 and 3.11).5. InterpolationThe ability to approximate well is related to the ability to interpolate. Ifone can approximate well, then one expects to be able to interpolate (theinverse need not, in general, hold). Let us pose this problem more preciselyin our setting.Assume we are given � 2 C(R). For k distinct points fxigki=1 � Rn, andassociated data f�igki=1 � R, can we always �nd m, fwjgmj=1 � Rn, andfcjgmj=1; f�jgmj=1 � R for whichmXj=1 cj�(wj � xi � �j) = �i; for i = 1; : : : ; k?Furthermore, what is the relationship between k and m?This problem has been considered, for example, in Sartori and Antsaklis(1991), Itô (1996), Itô and Saito (1996), and Huang and Babri (1998). In Itôand Saito (1996) it is proven that, if � is sigmoidal, continuous and nonde-creasing, one can always interpolate with m = k and some fwjgmj=1 � Sn�1.



166 A. PinkusHuang and Babri (1998) extend this result to any bounded, continuous, non-linear � which has a limit at in�nity or minus in�nity (but their wj are notrestricted in any way).We will use a technique from Section 3 to prove the following result.Theorem 5.1 Let � 2 C(R) and assume � is not a polynomial. For anyk distinct points fxigki=1 � Rn and associated data f�igki=1 � R, there existfwjgkj=1 � Rn, and fcjgkj=1; f�jgkj=1 � R such thatkXj=1 cj�(wj � xi � �j) = �i; i = 1; : : : ; k: (5.1)Furthermore, if � is not mean-periodic, then we may choose fwjgkj=1 �Sn�1.Proof. Let w 2 Rn be any vector for which the w � xi = ti are distinct,i = 1; : : : ; k. Set wj = �jw for �j 2 R, j = 1; : : : ; k. We �x the above wand vary the �j . We will have proven (5.1) if we can show the existence offcjgkj=1, f�jgkj=1 and f�jgkj=1 satisfyingkXj=1 cj�(�jti � �j) = �i; i = 1; : : : ; k: (5.2)Solving (5.2) is equivalent to proving the linear independence (over � and�) of the k continuous functions �(�ti � �), i = 1; : : : ; k. If these functionsare linearly independent there exist �j , �j , j = 1; : : : ; k, for whichdet (�(�jti � �j))ki;j=1 6= 0and then (5.2) can be solved, with these f�jgkj=1 and f�jgkj=1, for any choiceof f�igki=1. If, on the other hand, they are linearly dependent then thereexist nontrivial coe�cients fdigki=1 for whichkXi=1 di�(�ti � �) = 0; (5.3)for all �; � 2 R.We rewrite (5.3) in the formZ 1�1 �(�t� �) de�(t) = 0 (5.4)for all �; � 2 R with the measurede� = kXi=1 di�ti



Approximation theory of the MLP model in neural networks 167(�ti is the measure with point mass 1 at ti). The measure de� is a nontrivialBorel measure of �nite total variation and compact support. In other words,it represents a nontrivial linear functional on C(R). We have constructed,in (5.4), a nontrivial linear functional annihilating �(�t� �) for all �; � 2 R.This implies that spanf�(�t� �) : �; � 2 Rgis not dense in C(R), which contradicts Proposition 3.7. This proves Theo-rem 5.1 in this case.If � is not mean-periodic, thenspanf�(t� �) : � 2 Rgis dense in C(R). As above this implies that the f�(ti � �)gki=1 are linearlyindependent for every choice of distinct ftigki=1. Thus, for any w 2 Sn�1 forwhich the w �xi = ti are distinct, i = 1; : : : ; k, there exist f�jgkj=1 such thatdet (�(w � xi � �j))ki;j=1 6= 0:Choosing wj = w, j = 1; : : : ; k, and the above f�jgkj=1, we can solve (5.1).2If � is a polynomial, then whether we can or cannot interpolate dependsupon the choice of the points fxigki=1 and on the degree of �. If � is apolynomial of exact degree r, thenspanf�(w � x� �) : w 2 Sn�1; � 2 Rgis precisely the space of multivariate polynomials of total degree at most r.6. Degree of approximationFor a given activation function � we set, for each r,Mr(�) = ( rXi=1 ci�(wi � x� �i) : ci; �i 2 R; wi 2 Rn):We know, based on the results of Section 3, that if � 2 C(R) is not apolynomial then to each f 2 C(K) (K a compact subset of Rn) there existgr 2 Mr(�) for which limr!1maxx2K jf(x)� gr(x)j = 0:However, this tells us nothing about the rate of approximation. Nor doesit tell us if there is a method, reasonable or otherwise, for �nding `good'approximants. It is these questions, and more especially the �rst, which wewill address in this section.



168 A. PinkusWe �rst �x some additional notation. Let Bn denote the unit ball in Rn,that is, Bn = fx : kxk2 = (x21 + � � �+ x2n)1=2 � 1g:In this section we approximate functions de�ned on Bn. Cm(Bn) will de-note the set of all functions f de�ned on Bn for which Dkf is de�ned andcontinuous on Bn for all k 2 Zn+ satisfying jkj � m (see Section 4). TheSobolev spaceWmp =Wmp (Bn) may be de�ned as the completion of Cm(Bn)with respect to the normkfkm;p = ( (P0�jkj�m kDkfkpp)1=p; 1 � p <1,max0�jkj�m kDkfk1; p =1or some equivalent norm thereon. Herekgkp = � (RBn jg(x)jpdx)1=p; 1 � p <1,ess supx2Bn jg(x)j; p =1:We set Bmp = Bmp (Bn) = ff : f 2 Wmp ; kfkm;p � 1g. Since Bn is compactand C(Bn) is dense in Lp = Lp(Bn), we have that M(�) is dense in Lp foreach � 2 C(R) that is not a polynomial.We will �rst consider some lower bounds on the degree to which one canapproximate from Mr(�). As mentioned in Section 3, for any choice ofw 2 Rn, � 2 R, and function �, each factor�(w � x� �)is a ridge function. SetRr = ( rXi=1 gi(ai � x) : ai 2 Rn; gi 2 C(R); i= 1; : : : ; r):Since Mr(�) � Rr for any � 2 C(R), it therefore follows that, for everynorm k � kX on a normed linear space X containing Rr,E(f ;Mr(�);X) = infg2Mr(�) kf �gkX � infg2Rr kf �gkX = E(f ;Rr;X): (6.1)Can we estimate the right-hand side of (6.1) from below in some reasonableway? And if so, how relevant is this lower bound?Maiorov (1999) has proved the following lower bound. Assumem � 1 andn � 2. Then for each r there exists an f 2 Bm2 for whichE(f ;Rr;L2) � Cr�m=(n�1): (6.2)Here, and throughout, C is some generic positive constant independent ofthe things it should be independent of! (In this case, C is independent off and r.) The case n = 2 may be found in Oskolkov (1997). Maiorov also



Approximation theory of the MLP model in neural networks 169proves that for each f 2 Bm2E(f ;Rr;L2) � Cr�m=(n�1): (6.3)Thus he obtains the following result.Theorem 6.1. (Maiorov 1999) For each n � 2 and m � 1,E(Bm2 ;Rr;L2) = supf2Bm2 E(f ;Rr;L2) � r�m=(n�1):To be somewhat more precise, Maiorov (1999) proves the above result forBm2 for all m > 0, and not only integer m (the de�nition of Bm2 for such m isthen somewhat di�erent). In addition, Maiorov, Meir and Ratsaby (1999)show that the set of functions for which the lower bound (6.2) holds is oflarge measure. In other words, this is not simply a worst case result.The proof of this lower bound is too di�cult and complicated to be pre-sented here. However, the proof of the upper bound is more elementary andstandard, and will be used again in what follows. As such we exhibit it here.It is also valid for every p 2 [1;1].Theorem 6.2 For each p 2 [1;1] and every m � 1 and n � 2,E(Bmp ;Rr;Lp) � Cr�m=(n�1);where C is some constant independent of r.Proof. As in the proof of Theorem 4.1, let Hk denote the linear space ofhomogeneous polynomials of degree k (in Rn), and Pk = [ks=0Hs the linearspace of polynomials of degree at most k. Set r = �n�1+kk � = dimHk. Notethat r � kn�1. We �rst claim that Pk � Rr. This follows from the proof ofTheorem 4.1 where it is proven that if �k is the linear space of univariatepolynomials of degree at most k, then for any set of a1; : : : ; ar satisfyingdimHkjA = r, where A = fa1; : : : ; arg, we havePk = ( rXi=1 gi(ai � x) : gi 2 �k; i = 1; : : : ; r):Thus Pk � Rr, and thereforeE(Bmp ;Rr;Lp) � E(Bmp ;Pk;Lp):It is a classical result thatE(Bmp ;Pk;Lp) � Ck�m:Since r � kn�1 it therefore follows thatE(Bmp ;Pk;Lp) � Cr�m=(n�1)for some appropriate C. 2



170 A. PinkusRemark. Not only is it true that E(Bmp ;Pk;Lp) � Ck�m, but there alsoexist, for each p, m and k, linear operators L :Wmp ! Pk for whichsupf2Bmp kf � L(f)kp � Ck�m:This metatheorem has been around for years. For a proof, see Mhaskar(1996).Theorem 6.2 is not a very strong result. It simply says that we can, usingridge functions, approximate at least as well as we can approximate with anypolynomial space contained therein. Unfortunately the lower bound (6.2),currently only proven for the case p = 2, says that we can do no better, atleast for the given Sobolev spaces. This lower bound is also, as was stated, alower bound for the approximation error fromMr(�) (for every � 2 C(R)).But how relevant is it? Given p 2 [1;1] and m, is it true that for all� 2 C(R) we have E(Bmp ;Mr(�);Lp) � Cr�m=(n�1)for some C? No, not for all � 2 C(R) (see, for example, Theorem 6.7). Doesthere exist � 2 C(R) for whichE(Bmp ;Mr(�);Lp) � Cr�m=(n�1)for some C? The answer is yes. There exist activation functions for whichthis lower bound is attained. This in itself is hardly surprising. It is asimple consequence of the separability of C[�1; 1]. (As such the � exhibitedare rather pathological.) What is perhaps somewhat more surprising, at�rst glance, is the fact that there exist activation functions for which thislower bound is attained which are sigmoidal, strictly increasing and belongto C1(R).Proposition 6.3. (Maiorov and Pinkus 1999) There exist � 2 C1(R)that are sigmoidal and strictly increasing, and have the property that forevery g 2 Rr and " > 0 there exist ci; �i 2 Randwi 2 Rn, i = 1; : : : ; r+n+1,satisfying ����g(x)� r+n+1Xi=1 ci�(wi � x� �i)���� < "for all x 2 Bn .This result and Theorem 6.2 immediately imply the following result.Corollary 6.4 There exist � 2 C1(R) which are sigmoidal and strictlyincreasing, and for whichE(Bmp ;Mr(�);Lp) � Cr�m=(n�1) (6.4)for each p 2 [1;1], m � 1 and n � 2.



Approximation theory of the MLP model in neural networks 171Proof of Proposition 6.3. The space C[�1; 1] is separable. That is, itcontains a countable dense subset. Let fumg1m=1 be such a subset. Thus, toeach h 2 C[�1; 1] and each " > 0 there exists a k (dependent upon h and ")for which jh(t)� uk(t)j < "for all t 2 [�1; 1]. Assume each um is in C1[�1; 1]. (We can, for example,choose the fumg1m=1 from among the set of all polynomials with rationalcoe�cients.)We will now construct a strictly increasing C1 sigmoidal function �, thatis, limt!�1 �(t) = 0 and limt!1 �(t) = 1, such that, for each h 2 C[�1; 1]and " > 0, there exists an integer m and real coe�cients am1 , am2 , and am3(all dependent upon h and ") such thatjh(t)� (am1 �(t� 3) + am2 �(t+ 1) + am3 �(t+ 4m+ 1))j < "for all t 2 [�1; 1]. We do this by constructing � so that ak1�(t� 3)+ak2�(t+1) + ak3�(t+ 4k + 1) = uk(t), for each k, and t 2 [�1; 1].Let f be any C1, strictly monotone, sigmoidal function. There are many,for instance f(t) = 1=(1 + e�t). We de�ne � on [4m; 4m+ 2], m = 1; 2; : : : ;in the following way. Set �(t+4m+1) = bm+ cmt+dmum(t) for t 2 [�1; 1]where we choose the constants bm, cm and dm so that1. �(4m) = f(4m)2. 0 < �0(t) � f 0(t) on [4m; 4m+ 2].This is easily done. We make one further assumption. On the intervals[�4;�2] and [0; 2] we demand that � again satisfy conditions 1 and 2, asabove, and be linear, and that �(t� 3) and �(t+1) be linearly independenton [�1; 1]. To �nish the construction, simply �ll in the gaps in the domain ofde�nition of � (including all of (�1; 4)) in such a way that limt!�1 �(t) =0. From the construction there exists, for each k � 1, reals ak1; ak2, ak3 , forwhich ak1�(t� 3) + ak2�(t+ 1) + ak3�(t+ 4k + 1) = uk(t):Let g 2 Rr and " > 0 be given. We may writeg(x) = rXj=1 gj(aj � x)for some gj 2 C[�1; 1] and aj 2 Sn�1, j = 1; : : : ; r. From the aboveconstruction of � there exist constants bj1, bj2, bj3 and an integers kj suchthat jgj(t)� (bj1�(t� 3) + bj2�(t+ 1) + bj3�(t+ kj))j < "=rfor all t 2 [�1; 1] and j = 1; : : : ; r.



172 A. PinkusThusjgj(aj � x)� (bj1�(aj � x� 3) + bj2�(aj � x+ 1) + bj3�(aj � x+ kj))j < "=rfor all x 2 Bn , and hence����g(x)� rXj=1 �bj1�(aj � x� 3) + bj2�(aj � x+ 1) + bj3�(aj � x+ kj)� ���� < "for all x 2 Bn. Now each �(aj � x� 3), �(aj � x+ 1), j = 1; : : : ; r, is a linearfunction, that is, a linear combination of 1; x1; : : : ; xn. As such, therXj=1 bj1�(aj � x� 3) + bj2�(aj � x+ 1)may be rewritten using at most n+ 1 terms from the sum. This proves theproposition. 2Remark. The implications of Proposition 6.3 (and its proof) and Corol-lary 6.4 seem to be twofold. Firstly, sigmoidality, monotonicity and smooth-ness (C1) are not impediments to optimal degrees of approximation. Sec-ondly, and perhaps more surprisingly, these excellent properties are not su�-cient to deter the construction of `pathological' activation functions. In factthere exist real (entire) analytic, sigmoidal, strictly increasing � for whichthese same optimal error estimates hold (except that 3r replaces r + n + 1in Proposition 6.3). For further details, see Maiorov and Pinkus (1999). Inpractice any approximation process depends not only on the degree (order)of approximation, but also on the possibility, complexity and cost of �nd-ing good approximants. The above activation functions are very smoothand give the best degree of approximation. However, they are unacceptablycomplex.We now know something about what is possible, at least theoretically.However, there is another interesting lower bound which is larger than thatgiven above. How can that be? It has to do with the `method of approxima-tion'. We will show that if the choice of coe�cients, weights and thresholdsdepend continuously on the function being approximated (a not totally un-reasonable assumption), then a lower bound on the error of approximationto functions in Bmp from Mr(�) is of the order of r�m=n (rather than ther�m=(n�1) proven above). We will also show that for all � 2 C1(R) (� nota polynomial), and for many other �, this bound is attained.DeVore, Howard and Micchelli (1989) have introduced what they call acontinuous nonlinear d-width. It is de�ned as follows.Let K be a compact set in a normed linear space X . Let Pd be anycontinuous map from K to Rd, and Md any map whatsoever from Rd to X .



Approximation theory of the MLP model in neural networks 173Thus Md(Pd(�)) is a map from K to X that has a particular (and perhapspeculiar) factorization. For each such Pd and Md setE(K;Pd;Md;X) = supf2K kf �Md(Pd(f))kX ;and now de�ne the continuous nonlinear d-widthhd(K;X) = infPd ;MdE(K;Pd;Md;X)of K in X , where the in�mum is taken over all Pd and Md as above.DeVore, Howard and Micchelli prove, among other facts, the asymptoticestimate hd(Bmp ;Lp) � d�m=n:In our context we are interested in the lower bound. As such, we provide aproof of the following.Theorem 6.5. (DeVore, Howard and Micchelli 1989) For each �xedp 2 [1;1], m � 1 and n � 1hd(Bmp ;Lp) � Cd�m=nfor some constant C independent of d.Proof. The Bernstein d-width, bd(K;X), of a compact, convex, centrallysymmetric setK in X is the term which has been applied to a codi�cation ofone of the standard methods of providing lower bounds for many of the morecommon d-width concepts. This lower bound is also valid in this setting, aswe now show. For K and X , as above, setbd(K;X) = supXd+1 supf� : �S(Xd+1) � Kg;where Xd+1 is any (d+ 1)-dimensional subspace of X , and S(Xd+1) is theunit ball of Xd+1.Let Pd be any continuous map from K into Rd. SetePd(f) = Pd(f)� Pd(�f):Thus ePd is an odd, continuous map from K into Rd, i.e., ePd(�f) = � ePd(f).Assume �S(Xd+1) � K. ePd is an odd, continuous map of @(�S(Xd+1)) (theboundary of S(Xd+1)) into Rd. By the Borsuk Antipodality Theorem thereexists an f� 2 @(�S(Xd+1)) for which ePd(f�) = 0, i.e., Pd(f�) = Pd(�f�).As a consequence, for any map Md from Rd to X ,2f� = [f� �Md(Pd(f�))]� [�f� �Md(Pd(�f�))]and thereforemaxfkf� �Md(Pd(f�))kX; k � f� �Md(Pd(�f�))kXg � kf�kX = �:



174 A. PinkusSince f� 2 K, this implies thatE(K;Pd;Md;X) � �:This inequality is valid for every choice of eligible Pd and Md, and � �bd(K;X). Thus hd(K;X) � bd(K;X), and in particular hd(Bmp ;Lp) �bd(Bmp ;Lp).It remains to prove the bound bd(Bmp ;Lp) � Cd�m=n. This proof is quitestandard. Let � be any nonzero function in C1(Rn) with support in [0; 1]n.For ` > 0 and any j 2Zn, set�j;`(x1; : : : ; xn) = �(x1`� j1; : : : ; xn`� jn):Thus the support of �j;` lies inQni=1[ji=`; (ji + 1)=`]. For ` large, the numberof j 2Zn for which the support of �j;` lies totally in Bn is of the order of `n.A simple change of variable argument shows that, for every p 2 [1;1] andk 2Zn+, k�j;`kp = `�n=pk�kp;and kDk�j;`kp = `jkj�n=pkDk�kp:Furthermore, since the �j;` have distinct support (for �xed `),



Xj cj�j;`



p = `�n=pkckpk�kpand 



Dk Xj cj�j;`!



p = `jkj�n=pkckpkDk�kpwhere kckp is the `p-norm of the fcjg. Thus
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p;where we have restricted the j in the above summands to those j for whichthe support of �j;` lies totally in Bn.We have therefore obtained a linear subspace of dimension of order `nwith the property that, if 
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Approximation theory of the MLP model in neural networks 175for some constant C independent of `. This exactly implies thatbd(Bmp ;Lp) � C`�mwhere d � `n. Thushd(Bmp ;Lp) � bd(Bmp ;Lp) � Cd�m=n;which proves the theorem. 2This theorem is useful in what it tells us about approximating fromMr(�)by certain continuous methods. However, two things should be noted andunderstood. Firstly, these permissible `methods of approximation' do notnecessarily include all continuous methods of approximation. Secondly, someof the approximation methods being developed and used today in this settingare iterative and are not necessarily continuous.Any element g 2 Mr(�) has the formg(x) = rXi=1 ci�(wi � x� �i)for some constants ci; �i 2 R and wi 2 Rn, i = 1; : : : ; r. In general, whenapproximating f 2 Lp, our choice of g will depend upon these (n + 2)rparameters. (Some of these parameters may be �xed independent of thefunction being approximated.) For any method of approximation whichcontinuously depends on these parameters, the lower bound of Theorem 6.5holds.Theorem 6.6 Let Qr : Lp ! Mr(�) be any method of approximationwhere the parameters ci, �i and wi, i = 1; : : : ; r, are continuously dependenton the function being approximated (some may of course be �xed indepen-dent of the function). Thensupf2Bmp kf � Qrfkp � Cr�m=nfor some C independent of r.Additional upper and lower bound estimates appear in Maiorov and Meir(1999). Particular cases of their lower bounds for speci�c � improve uponthe lower bound for E(Bm2 ;Mr(�);L2) given in Theorem 6.1, without anyassumption about the continuity of the approximating procedure. We onlystate this next result. Its proof is too complicated to be presented here.Theorem 6.7. (Maiorov and Meir 1999) Let p 2 [1;1], m � 1 andn � 2. Let � be the logistic sigmoid, that is,�(t) = 11 + e�t ;



176 A. Pinkusor a (polynomial) spline of a �xed degree with a �nite number of knots.Then E(Bmp ;Mr(�);Lp) � C(r log r)�m=nfor some C independent of r.We now consider upper bounds. The next theorem may, with minor mod-i�cations, be found in Mhaskar (1996) (see also Ellacott and Bos (1996,p. 352)). Note that the logistic sigmoid satis�es the conditions of Theo-rem 6.8.Theorem 6.8 Assume � : R! R is such that � 2 C1(�) on some openinterval �, and � is not a polynomial on �. Then, for each p 2 [1;1],m � 1and n � 2, E(Bmp ;Mr(�);Lp) � Cr�m=n (6.5)for some constant C independent of r.Proof. The conditions of Theorem 6.8 imply, by Corollary 3.6, thatNk+1(�),the closure of Nk+1(�), contains �k, the linear space of univariate algebraicpolynomials of degree at most k.From the proof of Theorem 4.1 (see also Theorem 6.2), for s = dimHk �kn�1 there exist a1; : : : ; as in Sn�1 such thatPk = ( sXi=1 gi(ai � x) : gi 2 �k; i = 1; : : : ; s);where Pk is the linear space of n-variate algebraic polynomials of degree atmost k.Since each gi 2 Nk+1(�), andMp(�)+Mq(�) =Mp+q(�), it follows thatPk �Ms(k+1)(�):Set r = s(k + 1). ThenE(Bmp ;Mr(�);Lp) = E(Bmp ;Mr(�);Lp) � E(Bmp ;Pk;Lp) � Ck�mfor some constant C independent of r. Since r � kn, we haveE(Bmp ;Mr(�);Lp) � Cr�m=n;which proves the theorem. 2Remark. It is important to note that the upper bound of Theorem 6.8can be attained by continuous (and in fact linear) methods in the senseof Theorem 6.6. The thresholds �i can all be chosen to equal �o where�(k)(��o) 6= 0, k = 0; 1; 2; : : : (see Proposition 3.4). The weights are alsochosen independent of the function being approximated. The dependence onthe function is only in the choice of the gi and, as previously noted (see the



Approximation theory of the MLP model in neural networks 177remark after Theorem 6.2), this can in fact be done in a linear manner. (Foreach p 2 (1;1), the operator of best approximation from Pk is continuous.)Remark. For functions analytic in a neighbourhood of Bn, there are bet-ter order of approximation estimates, again based on polynomial approxi-mation: see Mhaskar (1996).If the optimal order of approximation fromMr(�) is really no better thanthat obtained by approximating from the polynomial space Pk of dimensionr � kn, then one cannot but wonder if it is really worthwhile using thismodel (at least in the case of a single hidden layer). It is not yet clear,from this perspective, what the mathematical or computational justi�cationsare for choosing this model over other models. Some researchers, however,would be more than content if they could construct neural networks thatalgorithmically achieve this order of approximation.Petrushev (1998) proves some general estimates concerning ridge and neu-ral network approximation. These results are valid only for p = 2. However,they generalize Theorem 6.8 within that setting.Let L12 = L2[�1; 1] with the usual normkgkL12 = � Z 1�1 jg(t)j2dt�1=2:Similarly Hm;2 will denote the Sobolev space on [�1; 1] with normkgkHm;2 =  mXj=0 kg(j)k2L12!1=2:Set E(Hm;2;Nk(�);L12) = supkhkHm;2�1 infg2Nk(�) kh� gkL12 :The point of the above is that this is all taking place in R1 rather than inRn.Theorem 6.9. (Petrushev 1998) Let m � 1 and n � 2. Assume � hasthe property that E(Hm;2;Nk(�);L12) � Ck�m; (6.6)for some C independent of k. ThenE(Bm+(n�1)=22 ;Mr(�) : L2) � Cr�(m+ (n�1)2 )=n; (6.7)for some other C independent of r.



178 A. PinkusRemark. It follows from general `interpolation' properties of spaces that,if (6.6) or (6.7) hold for a speci�c m, then they also hold for every positivevalue less than m.The proof of Theorem 6.9 is too complicated to be presented here. Theunderlying idea is similar to that used in the proof of Theorem 6.8. Oneuses multivariate polynomials to approximate functions in Bm+(n�1)=22 , de-composes these multivariate polynomials into `ridge' polynomials (the gi inthe proof of Theorem 6.8), and then approximates these univariate `ridge'polynomials from Nk(�).One consequence of Theorem 6.9 which we wish to highlight (as it is notdirectly covered by Theorem 6.8) is the following.Corollary 6.10. (Petrushev 1998) For each k 2Z+, let�k(t) = tk+ = � tk; t � 0,0; t < 0:Then E(Bm2 ;Mr(�k);L2) � Cr�m=nfor m = 1; : : : ; k + 1 + (n�1)2 , and some constant C independent of r.A variation on a result of Petrushev (1998) proves this corollary for m =k + 1 + (n � 1)=2. The other cases follow by taking di�erences (really justdi�erentiating), or as a consequence of the above remark. Note that �o(t)is the Heaviside function.For given k 2 Z+ assume � is continuous, or piecewise continuous, andsatis�es limt!�1 �(t)tk = 0; limt!1 �(t)tk = 1:(This is essentially what Mhaskar and Micchelli (1992) call kth degree sig-moidal.) Then lim�!1 �(�t)=�k = �k(t) uniformly o� [�c; c], any c > 0,and converges in Lp[�1; 1] for any p 2 [1;1). Let �k be as de�ned in Corol-lary 6.10. Thus Mr(�k) � Mr(�). In addition, if � is a spline of degreek with at least one simple knot, then by taking (a �nite number of) shiftsand dilates we can again approximate �k in the Lp[�1; 1] norm, p 2 [1;1).Thus, applying Corollary 6.10 we obtain the following.Corollary 6.11 For given k 2 Z+, let � be as de�ned in the previousparagraph. Then E(Bm2 ;Mr(�);L2) � Cr�m=nfor m = 1; : : : ; k + 1 + (n�1)2 , and some constant C independent of r.



Approximation theory of the MLP model in neural networks 179Note that the error of approximation in all these results has exactly thesame form as that given by (6.5). If � 2 C1(�) as in Theorem 6.8, then(6.6) holds since Nk(�) contains �k�1.A di�erent and very interesting approach to the problem of determining(or at least bounding) the order of approximation from the set Mr(�) wasinitiated by Barron (1993). Until now we have considered certain standardsmoothness classes (the Wmp ), and then tried to estimate the worst caseerror of approximation from functions in this class. Another approach is,givenMr(�), to try to �nd classes of functions which are well approximatedby Mr(�). This is generally a more di�cult problem, but one well worthpursuing. Barron does this, in a sense, in a speci�c but interesting setting.What we present here is based on work of Barron (1993), and general-izations due to Makovoz (1996). We start with a general result which isa generalization, due to Makovoz (1996), of a result of Barron (1993) andMaurey (Pisier 1981) (see also Jones (1992)). (Their result does not containthe factor "r(K).) It should be mentioned that, unlike the previously dis-cussed upper bounds, these upper bounds are obtained by strictly nonlinear(and not necessarily continuous) methods.Let H be a Hilbert space and K a bounded set therein. Let coK denotethe convex hull of K. Set"r(K) = inff" > 0 : K can be covered by r sets of diameter � "g:Theorem 6.12. (Makovoz 1996) LetK be a bounded subset of a Hilbertspace H . Let f 2 coK. Then there is an fr of the formfr = rXi=1 aigifor some gi 2 K, ai � 0, i = 1; : : : ; r, and Pri=1 ai � 1, satisfyingkf � frkH � 2"r(K)pr :Letting K be the set of our approximants we may have here a very rea-sonable approximation-theoretic result. The problem, however, is to identifycoK, or at least some signi�cant subset of coK in other than tautologicalterms. Otherwise the result could be rather sterile.Barron (1993) considered � which are bounded, measurable, and sig-moidal, and set K(�) = f��(w � x� �) : w 2 Rn; � 2 Rg:(Recall that x 2 Bn .) He then proved that coK(�) contains the set B ofall functions f de�ned on Bn which can be extended to all of Rn such that



180 A. Pinkussome shift of f by a constant has a Fourier transform bf satisfyingZRn ksk2j bf(s)j ds � 
;for some 
 > 0.Let us quickly explain, in general terms, why this result holds. As wementioned earlier, at least for continuous, sigmoidal � (see the commentafter Corollary 6.10), �(��) approaches �o(�) in norm as � ! 1, where�o is the Heaviside function. As such, coK(�o) � coK(�) (and, equallyimportant in what will follow, we essentially have K(�o) � K(�), i.e., wecan replace each �o(w �x� �) by only the one term �(�(w �x� �)) for somesu�ciently large �). So it su�ces to prove that the above set of functionsB is in fact contained in coK(�o).Set Lo = f��o(t� �) : � 2 Rg;for t 2 [�1; 1]. (Lo is simply K(�o) in R1.) Up to a constant (the `shift'previously mentioned) h is contained in coLo if and only if h is a functionof bounded variation with total variation bounded by 1. If h is continuouslydi�erentiable, this just means thatZ 1�1 jh0(t)j dt � 1:Applying this result to K(�o), this implies that, for each s 2 Rn, s 6= 0,
eis�xksk2 2 coK(�o)for some 
 (dependent on Bn). Thus, ifZRn ksk2j bf(s)j ds � 
;then f(x) = ZRn�
eis�xksk2 ��ksk2 bf(s)
 � ds 2 coK(�o):To apply Theorem 6.12 we should also obtain a good estimate for "r(K(�)).This quantity is generally impossible to estimate. However, since K(�o) �K(�) we haveMr(�o) �Mr(�), and it thus su�ces to consider "r(K(�o)).Since we are approximating on Bn ,K(�o) = f��o(w � x� �) : kwk2 = 1; j�j � 1g:(For any other w or � we add no additional function to the set K(�o).)Now, if kw1k2 = kw2k2 = 1, kw1 � w2k2 � "2; and j�1j; j�2j � 1,



Approximation theory of the MLP model in neural networks 181j�1 � �2j � "2, then�ZBn j�o(w1 � x� �1)� �o(w2 � x� �2)j2 dx�1=2 � C"for some constant C. Thus to estimate "r(K(�o)) we must �nd an "2-netfor f(w; �) : kwk2 = 1; j�j � 1g:It is easily shown that for this we need ("2)�n elements. Thus "r(K(�o)) �Cr�1=2n.We can now summarize.Theorem 6.13. (Makovoz 1996) Let B be as de�ned above. Then, forany bounded, measurable, sigmoidal function �,E(B;Mr(�);L2) � E(B;Mr(�)\ B;L2) � Cr�(n+1)=2n (6.8)for some constant C independent of r.If � is a piecewise continuous sigmoidal function, then from Corollary 6.11we have E(B(n+1)=22 ;Mr(�);L2) � Cr�(n+1)=2n:This is the same error bound, with the same activation function, as appearsin (6.8). As such it is natural to ask which, if either, is the stronger result.In fact the results are not comparable. The condition de�ning B cannotbe restated in terms of conditions on the derivatives. What is known (seeBarron (1993)) is that on Bn we essentially haveW [n=2]+21 � spanB � W11 � W12 :(The leftmost inclusion is almost, but not quite, correct: see Barron (1993).)The error estimate of Barron (1993) did not originally contain the term"r(K) and thus was of the form Cr�1=2 (for some constant C). This initiatedan unfortunate discussion concerning these results having `defeated the curseof dimensionality'.The literature contains various generalizations of the above results, andwe expect more to follow. Makovoz (1996) generalizes Theorems 6.12 and6.13 to Lq(B; �), where � is a probability measure on some set B in Rn,1 � q <1. (For a discussion of an analogous problem in the uniform norm,see Barron (1992) and Makovoz (1998).) Donahue, Gurvits, Darken andSontag (1997) consider di�erent generalizations of Theorem 6.12 and theyprovide a general perspective on this type of problem. Hornik, Stinchcombe,White and Auer (1994) (see also Chen and White (1999)) consider general-izations of the Barron (1993) results to where the function and some of itsderivatives are simultaneously approximated. Lower bounds on the error of



182 A. Pinkusapproximation are to be found in Barron (1992) and Makovoz (1996). How-ever, these lower bounds essentially apply to approximating fromMr(�o)\B(a restricted set of approximants and a particular activation function) anddo not apply to approximation from all ofMr(�). Other related results maybe found in Mhaskar and Micchelli (1994), Yukich, Stinchcombe and White(1995) and Kurkova, Kainen and Kreinovich (1997).For f 2 B the following algorithm of approximation was introduced byJones (1992) to obtain an iterative sequence fhrg of approximants (hr 2Mr(�)) where � is sigmoidal (as above). These approximants satisfykf � hrk2 � Cr�1=2;for some constant C independent of f and r. The sequence is constructedas follows. We initialize the process by setting h0 = 0, and then considermin0���1 ming2K(�) kf � (�hr�1 + (1� �)g)k2:Assume that these minima are attained for �r 2 [0; 1] and gr 2 K(�). Sethr = �rhr�1 + (1� �r)gr:(In the above we assume that K(�) is compact.) In fact, as mentioned byJones (1992), improved upon by Barron (1993), and further improved byJones (1999) (see also Donahue, Gurvits, Darken and Sontag (1997)), the�r and gr need not be chosen to attain the above minima exactly and yetthe same convergence rate will hold.We end this section by pointing out that much remains to be done in �nd-ing good upper bounds, constructing reasonable methods of approximation,and identifying classes of functions which are well approximated using thismodel. It is also worth noting that very few of the results we have surveyedused intrinsic properties of the activation functions. In Theorem 6.8 onlythe C1 property was used. Corollary 6.11 depends solely on the approxi-mation properties of �k. Theorem 6.13 is a result concerning the Heavisideactivation function.7. Two hidden layersRelatively little is known concerning the advantages and disadvantages ofusing a single hidden layer with many units (neurons) over many hiddenlayers with fewer units. The mathematics and approximation theory of theMLP model with more than one hidden layer is not well understood. Someauthors see little theoretical gain in considering more than one hidden layersince a single hidden layer model su�ces for density. Most authors, however,do allow for the possibility of certain other bene�ts to be gained from usingmore than one hidden layer. (See de Villiers and Barnard (1992) for acomparison of these two models.)



Approximation theory of the MLP model in neural networks 183One important advantage of the multiple (rather than single) hidden layermodel has to do with the existence of locally supported, or at least `localized',functions in the two hidden layer model (see Lapedes and Farber (1988),Blum and Li (1991), Geva and Sitte (1992), Chui, Li and Mhaskar (1994)).For any activation function �, every g 2 Mr(�), g 6= 0, hasZRn jg(x)jpdx =1for every p 2 [1;1), and no g 2 Mr(�) has compact support. This isno longer true in the two hidden layer model. For example, let �o be theHeaviside function. Then�o mXi=1 �o(wi �x��i)��m� 12�! = � 1; wi � x � �i; i = 1; : : : ; m;0; otherwise. (7.1)Thus the two hidden layer model with activation function �o, and only oneunit in the second hidden layer, can represent the characteristic function ofany closed convex polygonal domain. For example, for ai < bi, i = 1; : : : ; n,�o nXi=1(�o(xi � ai) + �o(�xi + bi))� �2n� 12�!is the characteristic function of the rectangle Qni=1[ai; bi]. (Up to boundaryvalues, this function also has the representation�o nXi=1(�o(xi � ai)� �o(xi � bi))� �n � 12�!since �o(�t) = 1 � �o(t) for all t 6= 0.) If � is a continuous or piecewisecontinuous sigmoidal function, then a similar result holds for such functionssince �(��) approaches �o(�) as �!1 in, say, Lp[�1; 1] for every p 2 [1;1).The function � � mXi=1 �(�(wi � x� �i))� �m� 12�!!thus approximates the function given in (7.1) as �!1. Approximating bysuch localized functions has many, many advantages.Another advantage of the multiple hidden layer model is the following.As was noted in Section 6, there is a lower bound on the degree to which thesingle hidden layer model with r units in the hidden layer can approximateany function. It is given by the extent to which a linear combination ofr ridge functions can approximate this same function. This lower boundwas shown to be attainable (Proposition 6.3 and Corollary 6.4), and, moreimportantly, ridge function approximation itself is bounded below (away



184 A. Pinkusfrom zero) with some non-tri
ing dependence on r and on the set to beapproximated.In the single hidden layer model there is an intrinsic lower bound on thedegree of approximation, depending on the number of units used. This isnot the case in the two hidden layer model. We will prove, using the sameactivation function as in Proposition 6.3, that there is no theoretical lowerbound on the error of approximation if we permit two hidden layers.To be precise, we will prove the following theorem.Theorem 7.1. (Maiorov and Pinkus 1999) There exists an activationfunction � which is C1, strictly increasing, and sigmoidal, and has thefollowing property. For any f 2 C[0; 1]n and " > 0, there exist constants di,cij , �ij , 
i, and vectors wij 2 Rn for which�����f(x)� 4n+3Xi=1 di� 2n+1Xj=1 cij�(wij � x+ �ij) + 
i!����� < ";for all x 2 [0; 1]n.In other words, for this speci�c activation function, any continuous func-tion on the unit cube in Rn can be uniformly approximated to within anyerror by a two hidden layer neural network with 2n + 1 units in the �rsthidden layer and 4n + 3 units in the second hidden layer. (We recall thatthe constructed activation function is nonetheless rather pathological.)In the proof of Theorem 7.1 we use the Kolmogorov Superposition The-orem. This theorem has been much quoted and discussed in the neuralnetwork literature: see Hecht-Nielsen (1987), Girosi and Poggio (1989),Kurkova (1991, 1992, 1995b), Lin and Unbehauen (1993). In fact Kurkova(1992) uses the Kolmogorov Superposition Theorem to construct approxi-mations in the two hidden layer model with an arbitrary sigmoidal function.However, the number of units needed is exceedingly large, and does not pro-vide for good error bounds or, in our opinion, a reasonably e�cient methodof approximation. Better error bounds follow by using localized functions(see, for instance, Blum and Li (1991), Itô (1994a), and especially Chui, Liand Mhaskar (1994)). Kurkova (1992) and others (see Frisch, Borzi, Ord,Percus and Williams (1989), Sprecher (1993, 1997), Katsuura and Sprecher(1994), Nees (1994, 1996)) are interested in using the Kolmogorov Superpo-sition Theorem to �nd good algorithms for approximation. This is not ouraim. We are using the Kolmogorov Superposition Theorem to prove thatthere is no theoretical lower bound on the degree of approximation commonto all activation functions, as is the case in the single hidden layer model. Infact, we are showing that there exists an activation function with very `nice'properties for which a �xed �nite number of units in both hidden layers is



Approximation theory of the MLP model in neural networks 185su�cient to approximate arbitrarily well any continuous function. We donot, however, advocate using this activation function.The Kolmogorov Superposition Theorem answers (in the negative) Hil-bert's 13th problem. It was proven by Kolmogorov in a series of papers inthe late 1950s. We quote below an improved version of this theorem (seeLorentz, von Golitschek and Makovoz (1996, p. 553) for a more detaileddiscussion).Theorem 7.2 There exist n constants �j > 0, j = 1; : : : ; n,Pnj=1 �j � 1,and 2n+1 strictly increasing continuous functions �i, i = 1; : : : ; 2n+1, whichmap [0; 1] to itself, such that every continuous function f of n variables on[0; 1]n can be represented in the formf(x1; : : : ; xn) = 2n+1Xi=1 g nXj=1 �j�i(xj)! (7.2)for some g 2 C[0; 1] depending on f .Note that this is a theorem about representing (and not approximating)functions. There have been numerous generalizations of this theorem. At-tempts to understand the nature of this theorem have led to interestingconcepts related to the complexity of functions. Nonetheless the theoremitself has had few, if any, direct applications.Proof of Theorem 7.1. We are given f 2 C[0; 1]n and " > 0. Let g and the�i be as in (7.2). We will use the � constructed in Proposition 6.3. Recallthat to any h 2 C[�1; 1] and � > 0 we can �nd constants a1; a2; a3 and aninteger m for whichjh(t)� (a1�(t� 3) + a2�(t+ 1) + a3�(t+m))j < �for all t 2 [�1; 1]. This result is certainly valid when we restrict ourselves tothe interval [0; 1] and functions continuous thereon. As such, for the aboveg there exist constants a1; a2; a3 and an integer m such thatjg(t)� (a1�(t� 3) + a2�(t+ 1) + a3�(t+m))j < "2(2n+ 1) (7.3)for all t 2 [0; 1]. Further, recall that �(t� 3) and �(t+ 1) are linear polyno-mials on [0; 1].Substituting (7.3) in (7.2), we obtain����f(x1; : : : ; xn)� 2n+1Xi=1 �a1� nXj=1 �j�i(xj)� 3!+ a2� nXj=1 �j�i(xj) + 1!+a3� nXj=1 �j�i(xj) +m!����� < "2 (7.4)



186 A. Pinkusfor all (x1; : : : ; xn) 2 [0; 1]n. Since� nXj=1 �j�i(xj)� 3! and � nXj=1 �j�i(xj) + 1!are linear polynomials in Pnj=1 �j�i(xj), for each i, we can in fact rewrite2n+1Xi=1 a1� nXj=1 �j�i(xj)� 3!+ a2� nXj=1 �j�i(xj) + 1!as 2n+2Xi=1 di� nXj=1 �j�i(xj) + 
i!where �2n+2 is �k for some k 2 f1; : : : ; 2n+ 1g (and 
i is either �3 or 1 foreach i).Thus we may rewrite (7.4) as����f(x1; : : : ; xn)� 2n+2Xi=1 di� nXj=1 �j�i(xj) + 
i!� 2n+1Xi=1 a3� nXj=1 �j�i(xj) +m!���� < "2 (7.5)for all (x1; : : : ; xn) 2 [0; 1]n.For each i 2 f1; : : : ; 2n + 1g, and � > 0 there exist constants bi1; b2i; bi3and integers ri such that�����i(xj)� �bi1�(xj � 3) + bi2�(xj + 1) + bi3�(xj + ri)����� < �for all xj 2 [0; 1]. Thus, since �j > 0, Pnj=1 �j � 1,���� nXj=1 �j�i(xj)� nXj=1 �j (bi1�(xj � 3) + bi2�(xj + 1) + bi3�(xj + ri)) ���� < �for all (x1; : : : ; xn) 2 [0; 1]n.Again we use the fact that the �(xj � 3) and �(xj + 1) are linear polyno-mials on [0; 1] to rewrite the above as���� nXj=1 �j�i(xj)� 2n+1Xj=1 cij�(wij � x+ �ij)���� < � (7.6)for all (x1; : : : ; xn) 2 [0; 1]n for some constants cij and �ij and vectors wij(in fact the wij are all unit vectors).



Approximation theory of the MLP model in neural networks 187We now substitute (7.6) into (7.5). As � is uniformly continuous on everyclosed interval, we can choose � > 0 su�ciently small so that���� 2n+2Xi=1 di� nXj=1 �j�i(xj) + 
i!+ 2n+1Xi=1 a3� nXj=1 �j�i(xj) +m!� 2n+2Xi=1 di� 2n+1Xj=1 cij�(wij � x+ �ij) + 
i!� 2n+1Xi=1 a3� 2n+1Xj=1 cij�(wij � x+ �ij) +m!���� < "2 : (7.7)From (7.5), (7.7), renumbering and renaming, the theorem follows. 2As a consequence of what was stated in the remark following the proof ofProposition 6.3, we can in fact prove Theorem 7.1 with a � which is analytic(and not only C1), strictly increasing, and sigmoidal (see Maiorov andPinkus (1999)). The di�erence is that we must then use 3n units in the �rstlayer and 6n + 3 units in the second layer. The restriction of Theorem 7.1to the unit cube is for convenience only. The same result holds over anycompact subset of Rn.We have established only two facts in this section. We have shown thatthere exist localized functions, and that there is no theoretical lower boundon the degree of approximation common to all activation functions (contraryto the situation in the single hidden layer model). Nonetheless there seems tobe reason to conjecture that the two hidden layer model may be signi�cantlymore promising than the single hidden layer model, at least from a purelyapproximation-theoretic point of view. This problem certainly warrantsfurther study.AcknowledgementThe author is indebted to Lee Jones, Moshe Leshno, Vitaly Maiorov, YulyMakovoz, and Pencho Petrushev for reading various parts of this paper. Allerrors, omissions and other transgressions are the author's responsibility.REFERENCESR. A. Adams (1975), Sobolev Spaces, Academic Press, New York.F. Albertini, E. D. Sontag and V. Maillot (1993), `Uniqueness of weights for neuralnetworks', in Arti�cial Neural Networks for Speech and Vision (R. J. Mam-mone, ed.), Chapman and Hall, London, pp. 113{125.J.-G. Attali and G. Pag�es (1997), `Approximations of functions by a multilayerperceptron: a new approach', Neural Networks 10, 1069{1081.A. R. Barron (1992), `Neural net approximation', in Proc. Seventh Yale Workshop
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