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1. INTRODUCTION 

A key fact necessary to characterize spaces of splines interpolating 

data at all integers is that the IZ - 2k + 1 degree polynomial (0 < k < x/2) 

. . . 
n 0 0 

n 

0 1 

possesses exactly n - 2k + 1 simple real zeros of sign (- l)k (see Lipow 
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and Schoenberg [lo], Schoenberg and Sharma [14]). The elements below 

the diagonal involving the 2 terms are zero as 
1 

0 k 
= 0 for 1 < k. This 

result set forth in Lipow and Schoenberg was proved by seemingly ad hoc 

methods involving special manipulations and devices. 

Stimulated to penetrate the essence of the fact of (1.1) we uncovered 

the easily proved Theorem 1.1 below. 

To state the result we fix some notation and terminology. Let B = 

\\bijljLl j”=r be an n x m real matrix. 

B(;; 1:: ;;j 

denotes the determinant obtained from B by deleting all rows and columns 

apart from those of indices i,, . , i, and iI,. . . , j, respectively. 

A matrix A is said to be Totally Positive-T.P. (strictly-S.T.P.)-if 

every minor is nonnegative (positive). A square matrix A is oscillating 

when A is T.P. and some iterate Al” is S.T.P. An oscillating matrix is of 

weak type Y (Y = 1, 2,. . . , n - 2) if A is T.P., nonsingular, and also 

satisfies 

( 1,2,. . .) Y 
A 

1 
> 0, n - Y + 1,. . ., n 

A >O, i = 2,. . ., n - r, 

A 
1, 2, . . ) 7, Y + i 

i 1 = - - 
i+l,%-~+l,...,n 

> 0, i 1,2,..., n Y 1. (1.2) 

THEOREM 1.1. Let A = Ijaijjl~j=l b e a strictly totally positive (S.T.P.) 

matrix OY moYe generally an oscillating matrix of weak type Y. Consider the 

polynomial of degree n - y 

where S,,, is the usual kronecker delta function. Then A,(?,) possesses exactly 

n - Y simple real zeros of sign (- 1)‘. 

The example of (1.1) is subsumed since 

A= 
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is indeed an oscillating matrix of weak type Y (verified in 

of Sec. 2). 

Corollary 2.1 

The scope and wide manifestations of totally positive matrices and 

kernels occur in such diverse contexts as probability theory (e.g., [B], [S]), 

approximation theory (e.g., [9], [15]), for facilitating numerical procedures 

in solving certain types of differential equations (e.g., [12]), in the analysis 

of certain integral and differential operators (e.g., [l], [2], [6], [ll], [13]), 

relevant for the theory of inequalities (e.g., [9], [IS]), and elsewhere. 

The proof of Theorem 1.1 is quite simple proceeding by an application 

of the Sylvester determinant identity (see Sec. 2) which reduces considera- 

tions to a problem of locating the eigenvalues of an associated oscillating 

matrix B = llBijll of order n - Y. In fact, we will obtain the identity 

d,(A) = c detllB - (- l)r’lbIl), (1.4) 

with c # 0, b > 0 (see Sec. 2 for details). Appeal is then made to the 

important result of Gantmacher and Krein to the effect that an oscillating 

matrix admits only simple positive eigenvalues. Lipow and Schoenberg [lo] 

in dealing with (1.1) also reduce the analysis to ascertaining the eigenvalues 

of an oscillating matrix. The reduction process they employ seems more 

elaborate and special. 

Another context in which polynomials of the kind (1.1) occur pertains 

to properties of eigenfunctions for integral operators induced by Totally 

Positive kernels (see [a], [4], [5] for further background). We describe 

the set-up in the matrix case. We will find that the conclusion of Theorem 

1.1 falls out as a small part of a rich oscillating structure endowed to 

certain determinantal polynomial systems associated with oscillation 

matrices. Let A = lluillj b e an ?z x n S.T.P. matrix. Designate by 

UiV)> i=I 9 ) 1). .) tz (1.5) 

the algebraic cofactors respectively of the last row in (A - AI). In 

particular 

a12 a13 .a* Ql,n-1 al,, 1 

as2--;1 az3 .a* a2,n-1 a2,n 

u,(A) = (- l)n+l as2 aS3--2 *** a3.n-1 F3.n , (1.6) 

i 
an-l,2 an-1.3 ..* an-h1 - 2 an-l,n 
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and note the resemblance to determinants of the type (1.3) with r = 1. 

Clearly, 

where D,(A) = det[A - AI]. Direct inspection, where A is S.T.P., reveals 

that %JA), i = 1, 2,. . ., n - 1 are polynomials of exact degree n - 2 while 

U,(A) = O,_i(;i) is of degree n - 1. 

If D(x, y, A) denotes the numerator of the resolvant function asso- 

ciated with an integral operator for the kernel K(x, y), defined on [a, b], 

then the system D(k, 1) = uk(3L) can be interpreted as the discrete version 

of D(x, y, 1) with specification y = b so that D(k, 1) corresponds to 

D(x, b, A). The importance and relevance of D(x, b, 1) and generally 

D(x, y, 2) in analyzing the nature of the integral operator A+ = s K(x, y) 

4(y) d,~(y), especially where K(x, y) is S.T.P. or oscillating is well 

established (e.g., see Gantmacher and Krein [2]). 

The significance of the system (~~(1)) for the study of the eigenstructure 

of a S.T.P. matrix A is partially described in [5]. The main facts for 

{q(1)} to be proved in this manuscript are now stated (see [7j for other 

remarkable properties of the system (~~(1))). The results undoubtedly 

bear analogs in the integral operator case. 

THEORE~L~ 1.2. Let A be S.T.P. of order n. Define (tiJl)}4 as in (1.5). 

Then 

(a) ~~(1) possesses i - 1 positive and n - i - 1 (when i = n, interpret 

?z - i - 1 = 0) negative simple zeros, i = 1,2,. . ., n; 

(b) the zeros of ~~(3.) and ~~+~(il), i = 1, 2,. . . , n - 1 strictly interlace. 

A generalized version of Theorem 1.2 involves the cofactors Us, 

(j = 1, 2,. . , n) of the rth row of A - 1,1,(‘) (see Theorem 1.3 for the 

definition of IncT)). We establish in Theorem 4.4 of Sec. 4 that I, has 

n - 1 simple zeros; am, i # Y, has n - 2 simple zeros. Moreover, 

am and ~j?i(J~) exhibit strictly interlacing zeros, and we also locate 

the zeros of ~~(“(1). 

The facts of (a) and (b) bear interpretations in the study of vibrating 

coupled mechanical systems (e.g., see [2] and [3]). Theorem 1.2 relates 
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to the following generalized characteristic polynomial theorem now 

highlighted. 

THEOREM 1.3. Let A = llaij$ b e an n x n oscillating matrix. Denote 

by Intk) = lieijil[j=l, k = 0, 1,. . . , n the diagonal matrix with 

1 

0, i # i, 

eij = - 1, l<i=j<k, 

+l, k+l\<i=i<n, 

so that Into) = I the identity, and I,cn) = - I. Then 

(i) Pn,JA) = detllA - H,c”)lJ h as k negative and n - k positive 

simple zeros. 

(ii) The zeros of Pn,,(;Z) and Q,,,(n) (the subdeterminant of A - lIfick) 

with kth YOW and column deleted) strictly interlace viewed from the origin. This 

means that separately on the positive and negative axes the zeros of P,,,(%) 

and QIL,k(l) strictly interlace displaying the orie?ztation that both on the 

positive and negative axes P,,k(ii) exhibits the closer zero to the origin. 

(iii) The zeros of Pn,k(A) and Pn,k+l (2) globally strictly interlace. 

By a standard device of approximating T.P. matrices by S.T.P. matrices 

[6, p. 881, we obtain the following corollary. 

COROLLARY 1.1. Let A and I, (li) be as above, where A is T.P. (not 

necessarily oscillatory). Then 

(i) Pn,k(A) = detllA - l,l,(k)lI h as n real zeros, coztnting multiplicity, 

of which at most k aye negative, and at most n - k aye positive. 

(ii) The zeros of Pn,,J1.) and Qn,k(li) interlace (not necessarily strictly), 

viewed from the origin as in Theorem 1.3. 

(iii) The zeros of Pn,J1.) and P,,k+1(2) interlace. 

The choice of I,(k) involving a consecutive block of - l’s followed by 

+ l’s (or in the other order) is crucial for the validity of Theorem 1.3. 

The theorem fails for general oscillating matrices when l,tk) remains a 

diagonal matrix but with &- 1 appearing in arbitrary order (i.e., not 

necessarily comprised of two blocks of constant opposite sign). 

In contrast to the preceding remark, provided A is positive definite, 

the conclusion of Theorem 1.3 prevails with an arbitrary diagonal I,tk). 
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THEOREM 1.4. Let A be a eositive definite n x n matrix. Define 

= 0 for i # jreivi, = - 1,v = l,..., k 

(2) = P,(2) = det[A - Ui(lcI] 

zeros (not necessarily simple). Moreover, 

the ZeYos of Pci ,,..., ik,(n) and Pcil,ie ,,.., ik.ik+l) (2) interlace (not necessarily 

strictly), where i,+l is any new index appended to (iI, i2,. . . , ik). 

REMARK. The first part of this theorem may be obtained as an easy 

consequence of the Inertia Theorem for symmetric matrices. 

Aside from the intrinsic interest of Theorems 1.1-1.4, as mentioned 

earlier, applications are forthcoming to the theory of interpolation of 

data by splines at equidistant points (see Lipow and Schoenberg [lo] 

and Schoenberg and Sharma [14]) and to the oscillation theory of solution 

sets for certain classes of differential equations. 

The organization of the paper runs as follows. Section 2 is devoted 

to establishing useful notation and recording preliminaries on the Sylvester 

determinant identity and relevant eigenvalue facts for oscillation,matrices. 

Section 2 also contains a simple transparent proof of Theorem 1.1. The 

proof of the principal Theorem 1.3 and several ramifications are elaborated 

in Sec. 3. 

The discussion of Theorem 1.2 and extensions are given in Sec. 4. 

Section 5 is concerned with the positive definite case as enunciated in 

Theorem 1.4. Refinements, and various counterexamples to some natural 

conjectures are considered in the concluding section. The appropriate 

version of Theorems 1.2 and 4.3 expressed for the resolvent kernel D(x, y, 2) 

of an integral operator with T.P. kernel K(x, y) will be expounded elsewhere. 

2. PRELIMINARIES AND THE PROOF OF THEOREM I. 1 

We shall exploit substantially Sylvester’s determinant identity stated 

immediately below for ready reference (cf. [B, p. 31). 

Let A be a fixed n x n matrix. Specify two sets of p tuples of indices 

1 <VI <*a* < vg < n, and 1 < PI < a.. < ,u, < n to be held fixed. 

For each index i (1 < i < n) not contained in the set v = (vi,. . , vp), 

and index j (1 < i < n) not contained in the set ,u = (pi,. . . , ,u~), we 

form 

bii = A(;::::::;;::‘) [consult (1.1) concerning this notation], (2.1) 
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where (k,,. . ., k,+l) embodies the set of indices (i, or,. . . , Y,) arranged in 

natural (i.e. increasing) order and (II, . . . , 1,+1) embodies the set of indices 

(i> PI,. . . , p,) also arranged in natural order. For any selections of 

indices i, < * * - < i,, i, $ v, and ir < * ** < jQ, jm 6 p, q < n - $5 we 
have the identity (known as the Sylvester determinant identity). 

where 

(%. . . , a*+,) = (il, * . . > i,, Vl, * . . , up,), 

(Bl, ’ . ’ , 8,+,) = (il>. . . > ia, Pl>. * . > Pu,) 

are each prescribed in natural order. 

The submatrix of A, composed of the rows of indices vr, . . , v, and 

columns of indices pr,. . , pp common to the determinant (2.1) is called 

the pivot block in the application of Sylvester’s determinant identity. 

The reader is referred to the statement occurring just prior to Theorem 

1.1 in Sec. 1 for the definitions of total positivity (T.P.), strict total 

positivity (S.T.P.) and oscillating matrices. Some important characteriza- 

tions and eigenvalue properties of oscillating matrices will now be cited. 

THEOREM 2.1 (Gantmacher and Krein [2]; see also [B, Chap. 21). 

(i) If A = lJaijljCjzl is T.P., th en A is an oscillating matrix iff 

IAl # 0, a,,i+l > 0, a,+l,i > 0, i = 1,. . ., n - 1. (2.3) 

(ii) If A is a?% oscillating matrix, then any principal submatrix of A 

is also az oscillating matrix. 

(iii) If A is an oscillating matrix, then the zeros of det[A - ?J] = 0 

aye positive and simple and strictly interlace those of the tzlo n - 1 order 

principal minors of A - U, obtained by deleting the last 70x1 and column 

OY the first 70~3 and column. 

(iv) If A is an oscillating matrix, and {u,(;i)}y=‘=, aye as in (1.5), then 

(- l)n-lul(~) > 0 foY all i > 0 and ~~(2) > 0 for all ii < 0. 

Proof. We validate only the assertion for z~(;i) in (iv). Since A is 

oscillatory, the zeros of IA - RI,1 strictly interlace the positive zeros of 

U,(A) by (iii). Take 2, > 0 such that det[A - &I] = 0 but u,(jl,J # 0. 
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Clearly, Au(&) = &,u(&,), where u(&,) denotes the vector with com- 

ponents [24,(&J,. . . , u,(&)] + 0, and ALu(&) = ;loku(&$ for k = 1, 2,. . . . 
For some k, A” is S.T.P., and from [5], we know that hi # 0. 

The polynomial expansion of ~~(1) is of the form 

exhibiting only nonnegative coefficients and we have zt,(ii,,) # 0. It 

follows that z~i(;i) # 0 for all I > 0. 

Note the following fact. 

LEMMA 2.1. Let A be T.P. (S.T.P.) and let B = (Ibijll be the n - p x 

n - p matrix defined in (2.1). Then B is T.P. (S.T.P.). 

Proof. A direct consequence of (2.2). 

We are now prepared to prove Theorem 1.1 (see Sec. 1 for its statement). 

Proof of Theorem 1.1. Construct the matrix B = Ilbijl~~z”=l+l, j”zl with 

pivot block based on the rows and columns of the minor 

via Sylvester’s determinant identity. Actually, it is better to apply the 

Sylvester determinant identity with the same pivot block to the matrix 

A - AJ(') (2.4) 

where J(r) = j16i-r,jll (6,,, is the kronecker delta function). 

This operation produces a matrix of size n - r x n - Y, of the explicit 

form 

1,2,. . ., 7 

B - A(- l)‘bl, b=A 
12-~+l,n-r+2,...,n 

. (2.5) 

By virtue of (2.2), we obtain 

det[B - A(- l)‘bl] = b”-‘-l det[A - AJ@)]. (2.6) 
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Because A is oscillating of weak type r we may verify directly [invoking 

repeated appeal to (2.2)] that the conditions (2.3) hold for the matrix B. 

This means that B is, in fact, oscillating. With this fact in hand Theorem 

2.1, part (iii) affirms that the polynomial (2.6) vanishes simply n - Y times 

such that each zero has sign (- 1)“. The proof of Theorem 1.1 is complete. 

COROLLARY 2.1. The polynomial (1.1) has 1% - Y simple .zeYo.s of sign 

(- 1)r. 

Proof. It suffices to check that the matrix 

is oscillating of weak type Y. 

We know that ’ 

K(i, j) = 
i 0 i 

determines a totally positive kernel as pointed out in [6, p. 1391. The other 

requirements listed in (1.2) are readily validated with the aid of the 

following fact: 

Given 0 < ii < . . . < i,, 0 < jl < . . + < is and o! > - s, all integers, 

and let C = IIC&=,, 

(2.7) 

Then 

det[C] > 0. (2.8) 

To prove (2.8) we factor out common terms in each row and column of C, 

to obtain 

det[Cl = r-g=1 b + G tis) JE, 

n;=* (is - is+&z) ! ’ 
where E = l(d&=,, and 

if ti + ik + js+~-~ < 9. 
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By Lemma 2.2’ [S, p. 1071 we have ICI > 0 as claimed in (2.8). 

With the help of (2.8) the verification of (1.2) for the matrix at hand 

follows straightforwardly. The conclusion of the corollary is hereby 

confirmed by virtue of the assertion of Theorem 1.1. 

We conclude this section with a final ancillary theorem needed for 

our analyses in Sets. 3 and 4. First, this definition. 

DEFINITION 2.1. Let x = (x1, x2,. . . , x,) be a real vector of n com- 

ponents. 

(i) S-(x) denotes the number of actual sign changes in the sequence 

x1> x2,. . . , x, with zero terms discarded. 

(ii) S+(x) counts the maximum number of sign changes achieved in 

the sequence x1,. . . , x,, where zero terms are assigned values + 1 or 

- 1 arbitrarily. For example 

S-(2,0, 1, - l,O, - 3) = 1, S+(2,0, 1, - 1, 0, - 3) = 5. 

THEOREM 2.2. Let B = j~bijjl~ZI, ,“=1 (n 3 m) be S.T.P.,. Let x 1= Bc 

with c a nontrivial real m-vector. Then 

(i) S+(x) < S-(c); 

(ii) If S+(x) = S-(c) then the sign of the first (and last) component 

of x [if zero, the sign given in determining S+(x)], agrees with the sign of the 

first (and last) nonzero component of c. 

(iii) If B is merely T.P. then S-(x) < S-(c) and the stipulation (ii) 

reads as S-(x) = S-(c) entails that the first (and last) non-zero components 

of x and c coincide in sign. 

Proof. The development of (i) can be easily inferred by the methods 

of [6, p. 2231. The statement of (ii) appears in the discussion of that 

reference in the slightly weaker form as stated in (iii). We reduce considera- 

tion to this case. Let S+(x) = S-(c) = p. This equation entails the existence 

of p + 1 indices (~~~$2: satisfying x. x. zy %“+I < 0 and {c~,}“,:: such that 

c. c. 3p 3~+1 < 0. Prescribe Q, sufficiently small obeying 

p = s+(x + E) = S-(x + &) = S-(x,, + Fi,,. . .) xjp+l + “ip+l). 

With E fixed next determine q to satisfy 2~ = F where d is the restriction 

of B to the rows and columns of indices (iv} and {i,} respectively. Also, 

assign qj = 0 for j # j,. Clearly ~5 = S-(c + 17). From the construction 
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of E we may infer @ = S-(x + E) 

the result of part (i). Thus S-(x 

Appeal to (iii) proved in [6, 

result of (ii). 

291 

= S+[B(C + q)] < S-(c + 7) = p using 

t 4 = s-cc + VI. 
p. 2231 and continuity establishes the 

3. PROOF OF THEOREM 1.3 AND RAMIFICATIONS 

Recall that I,tk) = ile,(n, k)&ll with si(n, k) = - 1 for 1 < i < k and 

+l for K+l,(i<n. It is convenient to introduce the following 

notation. 

Let A = I1qjllGzl be an n x n matrix. Set 

Pn,Jjl) = det[A - ;Il,‘k)] (3.1) 

and denote by 

Qnki(A) = deti[A - 21 9 I n ‘“‘1 

= the subdeterminant of A - ill,(“) with the lth row 

and column deleted. (3.2) 

We suppress the reference to n where no ambiguity can arise and write, 

more compactly 

Qd4 = Qn.d4 = Qn,&L (3.3) 

and introduce the notation Rk(l) = R,,,(1) = Q,,,,=(l). We give symbols 

to the determinants 

[A - itI,( 
1,. . . , k - 1, k, k + 2,. . . , n 

1 k-l,k+l,k+2 ,..., n 
= x,*&v = X,(4, 

9.. .I 

(3.4) 

1 
‘. . *’ 

k-l,k+l,k+Z ,..., n 
[A - Al,(k)] 

1 k-l,kyk+2,...,n = YnJo) = y.44, 
>. . .I 

(3.5) 

1 
[A - AI,(“)] 

k, k + 1, k + 3,. . . , n 

1::: 1: k, k + 2, k + 3,. . ., n = ~,,k(~)* 

[A - ;il,‘k’] 
1,. . . , k, k + 2, k + 3,. . . , n 

1,. , k, k + 1, k + 3,. . . , n = ~rL?$), 
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[A - hI,(“)] 
l,..., k-2,k-l,k+l,..., n 

1 
I.. ‘I k-2,k,k+l,..., n 

= w,,iM, 

[A - ,I1 ‘“‘I 
l,..., k-2,k,k+l,..., n 

n 1,. , k - 2, k - 1, k + 1,. . , n 
= zVZJA4. 

Thus (3.4) is the subdeterminant of A - II,(“) computed afterremoving 

row k + 1 and column k. Similarly Y,(A) is the minor of A - H,(k) with 

row k and column k + 1 deleted, etc. 

Finally, designate 

&i+,(4 = %i,i+,V) = [A - Alnck)l 
i- l,i+2,...,n 

i-l,if2,...,n 

(3.6) 

as the principal minor of A - ,Il,(li) with rows and columns of indices i 

and i + 1 removed. 

We will assume inductively the following properties for Pn,k(A), 

Q&V, and %(A): 
For each oscillating A of order m x m, m < n: 

(i) Pn,lc(,I) possesses precisely k negative and m - k positive simple 

zeros. 

(ii) The zeros of Qm,J;i) = Q,,+;(A) and P,,k(A) strictly interlace 

separately on the positive and negative axis (not with respect to the whole 

axis). Pm,lc(A), (k < m - l), necessarily admits a simple zero between 0 

and the smallest positive zero of Qm,k(A)r and, for 1 ,< k, P,,k(A) exhibits 

a zero between 0 and the least negative zero of Qm,k(/I). 

(iii) The zeros of Rm,JA) and Pn,k(jl) strictly interlace in the same 

sense as in (ii). 

Our immediate objective is to advance the induction to m = n, 1 < 

k < n - 1, maintaining (i)-(iii), Lemma 3.3 is a key step in this process. 

Note the following preliminary facts partly extending the result of 

Theorem 2.1, part (iv). 

LEMMA 3.1. Let A be oscillating. The determinant 

q(A) = [A - Il,‘k’] 
1, 2,. . . , k, k + 2,. . . , n 

2, 3,, . . ) n 
(3.7) 
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never vanishes for ;i negative. When A is S.T.P., ~~(1) displays Precisely 

n - 2 positive roots. 

Proof. Expanding vi(A) with due cognizance to the multilinear nature 

of the determinant, we find the representation 

(3.3) 

where all yi 3 0 (i = 2,. . , n - 1) since they are sums of minors of A. 

Note that every contribution coming from the multilinear expansion of 

the determinant (3.7) is nonnegative for A < 0. It suffices to determine 

one or a group of terms contributing to (3.8) whose sum is strictly positive 

for negative A. Consider the cumulative terms arising by taking the - 1 

factor from the last n - k - 1 rows and columns. The result is 

ai2 aI3 .** alk 

a22 + 2 a23 ’ ” a2k 

alk+l 

(- A)n-k-lz(A) where z(1) = . 
a2,k+1 

t ;k2 ” ’ akk + 2 ak,k+l i 
Observe that z(1) (apart from a factor) is precisely the analog of q(A) 

[defined in (1.5)] with respect to the matrix (A + iii) contracted to the 

first k + 1 rows and columns. Referring to Theorem 2.1, part (iv), we 

see that z(A) > 0 for 1 < 0. The first half of Lemma 3.1 is proved. 

In the case where A is S.T.P. we operate on q(A) via Sylvester’s deter- 

minant identity with pivot block the single element a,,,,, reducing (apart 

from a positive factor) to the form 

detllC - 11~11, where C is S.T.P., c = ai,k+l. 

Theorem 2.1 informs us that the determinant vanishes simply n - 2 times 

on the positive axis. 

In a symmetrical manner we prove the following lemma. 

LEMiV.4 3.2. If A is oscillating, then 

v,(A) = [A - ,?I,‘“‘] 
1,2,. . .) k, k + 2,. . . , n 

1, 2,. . . , n - 1 

neuey vanishes for 1 > 0. Where A is S.T.P., v,(A) has exactly n - 2 simple 

negative zeros. 
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We now proceed to the two main lemmas. 

LEMMA 3.3. Aswme A is an oscillating matrix of order n and stipulate 

(i)-(iii) to hold for every oscillating matrix of order m < n. Then X,,,(2) 

. Y,,,(A) > 0 [see (3.4) ad (3.5)] at the negative zeros of R&4), and 

U,,,(l)V,,,(;i,) > 0 at the positive zeros of R,,,(I). 

Proof. Consider the matrix A - ll,(k) and define q(I), vz(I), . . . , v,(l) 

as the algebraic cofactors of the k + 1st row. (Of course it is understood 

that k + 1 < n.) We can recognize 

and 

- v&?) = X,(J). (3.9) 

Citing Lemma 3.1, we see that v(I) = [v,(n),. . ., u,(l)] is a nontrivial 

real vector for all negative A. The vector v(n) by virtue of its definition 

satisfies the relations [cf. (1.7)] 

and obviously 

where 

= : det[A - jlJ,(k+l)] 

i = 1, 2,. . . , k, 

i = k + 2,. . ., n, 

i = 1, 2,. . . , k, 

i = k + 2,. . . , n, 

otherwise. 

(3.10) 

(3.11) 

We write (3.10) and (3.11) compactly displaying the image vector as 

A+) = [- In,,, .., - ;3v,(~),~,+~(~),13v,+~(n),...,iv,(L)i. (3.12) 

Consider a negative zero A0 of ~,+~(ii). Determine 
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Y = max{l; ~~(2~) # 0,l < k} (3.13) 

which is well defined by virtue of Lemma 3.1 asserting that vi(P) # 0. 

We establish the following three facts: 

(a) v,(A”)L(lO) 3 0. [We have dropped the subscript and written 

L(A) = L+lm. 
(b) Y = k. 

(c, -wO) # 0. 

Proof of (a). Assume to the contrary that 

+o)L(P) < 0 (3.14) 

holds and compare S-{A[v(;i”)]} and S-[v(lO)]. Inspection of (3.12) 

taking account of (3.14), reveals that necessarily 

S-jv(l,“)] < S-{A[v(J.O)]}, since ;1O < 0. 

This produces an inconsistency with the assertion of Theorem 2.2, part 

(iii). To avert this difficulty, the validity of (a) is required. 

Proof of (b). Suppose Y < k - 1 (we pointed out earlier that Y > 1). 

Form the perturbed vector ~(1,~; E) = ~(2”) + E where E = (ei, .Q,. . ., E,) 

has ei = 0, i # Y and .s, = - E sign v,()3O), F > 0. 

In effect, we are slightly reducing in magnitude exclusively the com- 

ponent v,(AO) and all other components of ~(1~) are unaltered. Manifestly, 

for E positive and sufficiently small 

S-{A [v(P; E)]} > S-{A [v(P)]}, 

and observe that the image vector A[v(AO; E)] has the Y + lth coordinate 

equal to - ca,+l,r sign v,(lO) of opposite sign to - ;1Ov,(i1O) since - A0 > 0 

and a,,i,, > 0 [see Theorem 2.1, part (i)]. Equivalently we have achieved 

{A[v(iO; ~)l),c~[v(~"; E)1),+1 < 0. (3.15) 

A contradiction ensues from (3.15) paraphrasing the proof of part (a). 

Indeed, if L(1O) # 0, then we violate (a) directly, and when L(1O) = 0, 

then by counting sign changes, using (3.15), it follows that S-{A[v(lZO; E)]} = 

S-[v(iiO; E)] and that there exists an s 3 k + 2 for which us(lo, E) # 0 or 

Theorem 2.2, part (i) is contradicted. But this in turn violates part (iii) 

of Theorem 2.2. 
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Proof of (c). Assuming L(1O) = 0, we execute the perturbation on 

the Kth component ~~(1~) done above and are led to the same contradiction 

as in (a). 

The result of (a), (b), and (c) in conjunction establish the inequality 

v@)L(P) > 0. (3.16) 

Introduce next the algebraic cofactors 

w(P) = [WI(P), . . ) zeJ,(P)] 

of the K + 1st column of [A - ,U,(k)]. Comparisons reveal that 

~~(2) = - Yk(l) and ~,+r(2) = Rk(l) = ~~+r(;i). 

The parallel analysis as for the v(1) system yields 

- Y,(P)L(IO) = z&P)L(P) > 0. 

Comparing (3.9), (3.16), and (3.17), we obtain 

X,(P)Y,(P) > 0, 

at the negative zeros of Rk(jl). 

(3.17) 

(3.18) 

To deal with the positive zeros of R,(a) we proceed completely analogous 

with all considerations implemented, viewed in opposite order, where, for 

example, the nth component a,(n) plays the role of zli(jl), etc. In this way 

we achieve that at the positive zeros of RR(A), U,,,(n)V,,,(n) > 0. 

LEMMA 3.3’. Under the conaitions of Lemma 3.3, X,(A)Y,(2) > 0 at 

the positive .zeros of Qa,k(;l), and W,,,(n)Z,,,(l) > 0 at the negative Zeros 

of Qnd4. 

The proof works in the same manner as Lemma 3.3, where we note 

that if Q,,,(n) has negative zeros, then K - 1 > 1. 

LEMMA 3.4. Assume A is oscillating and (i)-(iii) hold for m < n. 

Then (i)-(iii) persist for m = n. 

Proof. We apply Sylvester’s determinant identity to A - ilI,ck) with 

pivot block the matrix of the determinant S,,,+r(1) producing the identity 

p?L7c(4L,k+l(4 = 
WV X,(4 
Yd4 Qd4 . 

(3.19) 
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We know by virtue of the induction hypothesis [condition (iii) with 

m = n - 11 that 

S n,k,k+l(A) changes sign separately at the sets of positive 

and negative zeros of R,(A). (3.20) 

Moreover,Lemma3.3tellsusthatatthenegativezerosofR,(31),X,(~)Y,(~) > 

0. It follows, referring to the identity (3.19) that 

PnJC(&%,lc.k+l (A) < 0 prevails at the negative zeros of RJA). (3.21) 

The assertions (3.20) and (3.21) together lead to the inference that P,,,(A) 

strictly changes sign while traversing the set of negative zeros of R,(A). 

Moreover the induction hypothesis (iii) and (3.21) also tells us that P,,!,(A) 

is negative at the least negative zero of Rk(l.). These facts coupled with the 

observations that the P71,1;(0) > 0 and that the leading coefficient of Pn,*(A) 

has sign (- l)n-k clearly implies properties (i) and (iii) of the next induc- 

tion step on the negative axis. To achieve the result on the positive axis, 

we apply the above analysis with S,,,+,,,+,(A) in place of S,,,,,+,(A). 

The conclusion of (ii) is secured exactly as above examining the equation 

(3.19) at the positive zeros of &(A) with reliance on Lemma 3.3’ and then 

replacing S,,,,,+,(A) by S,,,_i,,(A) to obtain (ii) for the negative zeros of 

Qk(A). Lemma 3.4 is fully proved once properties (i)-(iii) are confirmed 

in the cases of n = 1, 2 which are direct. 

COROLLARY 3.1. At all the 2eYo.s of Rli(A) we have 

zGm~,+,@) < 0, k = l,...,rz-2. (3.22) 

Proof. By Lemma 3.3, we have that at the zeros of Rk(jl), 

0 f Pn*dW,,,+l (2) = - X,(/l)Y,(1). 

So X,(A) = - ~~(1) never vanishes at the zeros of Rk(lb). In a symmetrical 

way we deduce that v,+a(A) # 0 at these points. Finally, for A0 satisfying 

R,(1O) = 0, the vector equation 

A [v(P)] = [- P”i(P), . . , - ~%,p), Lk+l(xq, &“+~(lq,. . . , ii%,(rlO)] 

[see (3.12)], requires 

S-{A[v(AO)]J < S-jv(/l”)]. 

This is only possible if u~(A~)v~+~(A~) < 0. 
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We can now state Theorem 3.1. 

THEOREM 3.1. Let A be oscillating. Then 

(i) Pn,k(;l) = det[A - Il,ck)] possesses n - k positive and k negative 

simple zeros. 

(ii) The sets of positive and sets of negative zeros of Qn,lc(il) and Pa,k(l) 

strictly interlace where the smallest positive and least negative zeros of Pn,k(I) 

aye closer to the origin than the corresponding zeros for Q&2). 

(iii) The zeros of R,,,(l) and Pn,k(;l) strictly interlace in the same 

sense as in (ii). 

(iv) The zeros of Pn,k(A) and Pn,k+l (I) strictly interlace such that the 

largest zero of Pn,k(?,) exceeds that of Pfi,k+l(l). 

Proof. The proof of (i)-(iii) was accomplished through Lemmas 

3.1-3.4. The proof of (iv) is obtained with the aid of the following lemma. 

LEMMA 3.5. Let $,(A) and qn(il) be two real polynomials of degree n not 

identically equal, for which 

(a) p,(A) and qn(;l) have n real zeros. 

(b) (- l)‘pp,(&) = (- l)‘q,(&) > 0, i = 1,. . , n, where & < * * - < A,. 

Then the roots of p,(n) and q%(I) strictly interlace. 

Proof. The result follows immediately from the observation that 

both p,(n) and qn(;l) have a zero in (&, I,+r), i = 1,. . ., n - 1, and that 

p,(A) - q%(A) = 0 necessarily only at ;1 = II,. . . , A,, each of which is 

simple. 

Completion of the proof of Theorem 3.1. Since P&n) = Lk+l(~) - 

1 J,,lV)> and Pn.k+l (A) = Lk+l@) + iivk+l(A)p then Pn.k(A) = Pn.k+l(A) 

at the n - 1 simple zeros of vk+r(A), and also at ;i = 0. By parts (ii) and 

(iii) of Theorem 3.1, it follows that Pn,k(I) alternates in sign at the set 

of points including the zeros of vk+r (I) and 0. Applying Lemma 3.5 and 

utilizing part (i) of Theorem 3.1, the proof is completed. 

The interlacing result enunciated in part (iv) of Theorem 3.1 hints at 

the monotonicity property stated in the next proposition. 
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PROPOSITION 3.1. Let A be as in Theorem 3.1, and consider the family 

of matrices depending on the parameter b introduced into the k + 1st YOUJ 01 

A, viz. 

where 

A b.k+l = j)aij(b, k + 1)II&l, 

i = 1,. . . , k, k + 2,. . . , n; j = l,...,n, 
aij(b, k + 1) = i&i’ 

k+l.ig i=k+l; j = 1,. . .) n. 

Define P&l.; b) = det[Ab,,+I - M,‘k)]. Thejz the Z~YOS of P,,,,(jl, b) 

strictl,y increase as b increases from - ~0 to ~0. 

Proof. Expand Pn,lc(jl; b) by the k + 1st row to obtain 

P,,,(A; b) = bP,,,(iv) + (b - l)&,&). (3.23) 

Consider the function - %R,,,()1,)/P,,,(l.). We know from Theorem 3.1, 

part (iii), that the zeros of I.Rn,k(J.) strictly interlace the zeros of P,,,(A). 

A familiar analysis implies the representation 

where A, < * . . < A1 are the zeros of P,,k(n) and ci are of one strict sign 

(in fact, in the case at hand, we have ci > 0). 

It follows that - UX’,,~(;~)/P~,~(;~) IS monotone decreasing in each of 

the intervals (&+l, /Ii), i = 0, 1,. . ., n, where A0 = ~0, &+l = - ~0, and 

i= l,...,n, 

lim SR,,(i,, = _ a, 

wai pm kv-1 
i = 1,. . .,n, 

It is now clear that the equality 

- wLk(4 
pn.kod 

= Ft7 [compare to (3.23)], 
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holds for n distinct numbers {&(b)>Li which are manifestly the zeros of 

P,,,(R; b). Since b/(b - 1) is monotone we further find that 1,(b) strictly 

decreases & b increases. A more precise location of their variation is that 

for 1 < b < co, li < A,(b) -=c &_1, i = 1,. . ., n, while for - 00 < b < 1, 

2i+l < l*(b) < ii, i = 1,. . . , n. 

Implementing analyses paraphrasing those used in the proof of Theorem 

3.1 produces the following result. 

‘THEOREM 3.2. Let A be oscillating. The n - k - 1 positive zeros of 

[A - 2I,(k)] 
l,Z,...,n-1 

1,2,. . .) n - 1 

strictly interlace the n - k positive zeros of P&l) fey k = 0, 1,. . . , n - 2, 

and the k - 1 negative zeros of 

strictly interlace the k negative zeros of Pn,Jl), k = 2, 3,. . . , n. 

4.THEOREM 1.2 AND SOME EXTENSIONS 

Consider the matrix A - ill with A S.T.P. Define z+(A), k = 1,2,. . . , FZ 

as the algebraic cofactors of the last row in A - l.1. Explicitly, 

(- l)n+%,(;1) = 

all - J a12 

a21 a22 - 2 

,a,41 an-l.2 

. . . 
al,k-l al.k+l 

.*. 
b-1 ah 

. . . 
a2.k-l a2,k+l 

. . . 
a2.d a2,n 

a.. 
ak-l.k-l - A ak-l.k+l ’ * ’ ak-l,n-l ak-l.n 

. . . 
ak,k-l ak.k+l 

. . * 
ak.n-l ak,n 

. . * 
ak+l.k-l ak+l.k+l -2 "' ak+l.n-l ak+l,n 

"' an-l.k-l an-l.k+l +*a an-l.n-l - 1 an+ 

(4.1) 

Via Sylvester’s Determinant identity with pivot block consisting of the 
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single term ak,n we can convert z.+(A), (1 < k < n - 1) into the form 

[cf. (241, 

1 
(- l)“‘“u7&(I,) = -- 

[ak,nln-3 
detj]B + #,‘C;‘a,,,lj, (4.2) 

where 

bij = 

l<i<k, 

(1 ,< i < n - 1, i # k), 

k<i,<n-1, 

and B is S.T.P. in accordance with Lemma 2.1. (Note the difference that 

1 appears in (4.2) with a plus coefficient.) On the basis of Theorem 3.1, 

part (i), we may conclude 

THEOREM 4.1. Let A be S.T.P. Then uk(;l), k = 1, 2,. . . , n, - 1 has 

exactly k - 1 simple positive zeros and n - 1 - k simple negative zeros. 

u,(l) has n - 1 simple positive zeros. 

The next lemma pertains to the interlacing structure of the zeros of 

the polynomials zt,_r(A) and u,(l). 

LEMMA 4.1. The .zeYos of u+~(~L) and u,(l) strictly interlace. 

Proof. Applying Sylvester’s determinant identity to A - 1I we obtain 

where 

a(2) = (A - 
. , n - . 1 

7.1) i 

2, 3,. 

1,2,. ’ n - ., 2 i 

D,(A) = det(A - AI), 
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&-i(n) 

2, 3,. . 

(A 11) 0 . ) ?z-l,n 

= - 1 2 I.. .I n-2,n 1 (44 

The polynomial z&(n) is the analog of U,(A) when constructed in terms 

of the cofactors of the first row of A - 11. It follows as in Theorem 2.1, 

part (iv), that z&(A) maintains a constant positive sign for il > 0. The 

polynomia1 a(A) is a corresponding version for a Iower order matrix. So 

again we have 

a(1) > 0, for ii > 0. 

It is known [consult Theorem 2.1, part (iii)] that w,(n) exhibits n - 1 

simple positive zeros which strictly interlace the n simple positive zeros 

of D,(J). 

Examining the identity (4.3) at the zeros of U,(A) since D,(1) strictly 

alternates in sign at these points while C%(1) and a(n) maintain a constant 

sign we infer that U,_,(A) strictly alternates in sign at the zeros of U,(A). 

Noting that ~,_i(n) is of degree n - 2, the assertion of Lemma 4.1 follows. 

We can now complete the proof of Theorem 1.2. 

THEOREM 4.2. Let A be S.T.P. The zeros of ~~(2) and u,+,(l) strictly 

interlace, k = 1,. . . , n - 1. 

Proof. We have the transformation equations [cf. (1.7)] 

Au@) = [%(A), Aus(;l), . ..I ha,, &t(A) + o&+)1, (4.5) 

where u(A) = [pi,. . ., u,(J.)]. The vector u(A) is nontrivial for all real 

1 [noted in Theorem 2.1, part (iv)]. If ~~(2~) = 0, i = 2, 3,. . . , n - 1 then 

the inequality 

S+{A [WI> d WWI 

required in accordance with Theorem 2.2 and owing to the special form 

of Au(A) displayed in (4.5) compels the relation 

tii-i(P)Ui+i(P) < 0 at any zero ii0 of Ui(A). (4.6) 

We know by Lemma 4.1 that U,(A) alternates in sign at the zeros of 

+-i(1). It follows in view of (4.6) that u,_~(A) changes sign at the zeros 

of ~,+i(;i). Applying the same reasoning to the zeros of un_a(3L) we deduce 
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the interlacing structure of the zeros of .u,_s(;1) and %,-a(J). Iterating this 

argument the desired conclusion of the theorem is validated. 

A standard approximation procedure leads to the following theorem. 

THEOREM 4.3. Let A be T.P. (not necessarily strict) and form the 

associated polynomials 

Then ~~(1) admit only real zeros. (However 

deg[u,(JL)] < n - 2, l<i<n-1, deg[M41 < n - 1.1 

The .zeYos of u,(I) and ~d~+~(ji) interlace weakly (i.e. coincidences may occur). 

The developments of Theorems 4.1-4.3 can be extended to cover the 

following situation. Define 

Uj’k’(q, k, j = 1, 2,. . . , n, (4.7) 

as the algebraic cofactors of the kth row of [A - ,U,(k)]. 

THEOREM 4.4. Let A be S.T.P. Then 

(4 ,u,(~)(,?) has n - 1 simple zeros; ujck)(l), j # k, has n - 2 simple 

zeros. 

(b) (i) For j < k, ~~(“‘(2) has j - 1 negative zeros and n - i - 1 

positive zeros. 

(ii) u,(k)(1) has k - 1 negative zeros and n - k positive zeros. 

(iii) For j > k, Us has i - 2 negative zeros and n - i positive 

zeros. 

(c) The zeros of ujtk)(A) and uyil(n) strictly interlace, j = 1,. . . , n - 1. 

Proof. For k = 1, n, the relevant assertions were validated as part 

of Theorems 4.1 and 4.2. Consider k = 2,. . , n - 1. For ease of notation, 

write 

Uj’“‘(;l) = yj(n). 

The proof of parts (a) and (b) for ~~(1) follows by appeal to Theorem 3.1 

and with the aid of the Sylvester’s determinant identity involving the 

pivot block consisting of the single element ajk. 
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For the proof of part (c), we need the following fact. 

LEMMA 4.2. yj_r@)yj+r(I) < 0 at the zeros of y&I), j = 2,. . ., n - 1. 

Proof. (a) j = k. Since A is S.T.P., then owing to Theorem 2.2 

we have S+{A[y(;i)]} < S-(y(R)). This relation is sufficient to assure that 

yk_l(;i)y,+l(jl) < 0 at the zeros of y,(n). 

(b) 7 = k - 1. Assume yk_-Z(,I)yR(I) > 0 at a zero & of yk_r(jl). 

Hence, 

wY(&)l = wYI(h3)t.~ .) Yk-2(M 

+ s-[Y*(hd~~ * ’ 9 Yn(~oL 

d s+[- &YI(AI)~~ * *, - ~OYk-2(~0)1 

+ s+[o, L@O)> JOYk+l(~O)r~. .> ~OY?z(~O)l~ 

d S+[AY@o)l. 

Comparing with Theorem 2.2, we conclude that S-[y(~o)] = S+[Ay(Io)]. 

A contradiction now emerges in view of part (ii) of Theorem 2.2. 

(c) i < k - 1. Assume yj_r(I)yj+r(I) 2 0 at a zero &, of yj(A). 

This immediately implies 

WY@,)1 < s+[AYvo)l - 19 in contradiction to Theorem 2.2. 

(d) i > k + 1. This is done paralleling the analysis of (b) and (c). 

Proof of Theorem 4.4, part (c). The analysis of Sec. 3 showed that 

Y~_~(I)I+(I.) > 0 at the negative zeros of yk(I), and yk+r(A)Lk(I) > 0 at 

the positive zeros of yk(n). Thus, by Lemma 4.2, Y,+~(A)_&(A) < 0 at the 

positive zeros of yk(n). Since P,,, (A) = &(/I) at the zeros of yk(A), and 

yk_r(0) < 0, then using part (ii) of Theorem 3.1 and the above facts, our 

result follows for i = k - 1. 

Since Y~_~(;I)~~(;I) < 0 at the zeros of yk_r(I), and due to the interlacing 

properties of ~~(2) and yk_r(A) proved above, and the fact that yk_a(0), y,(O), 

and - Y~_~(O) are positive, it follows that yk_a(I) has a zero between each 

two zeros of y,_r(,I). But since ~~_a(,?) has n - k + 1 positive zeros by 

part (b), ~~_~(il) must have a zero exceeding the largest zero of y,_,(n). 

Thus, part (c) is proven for i = k - 2. In the same manner we prove 

part (c) for i < k, and analogously for i > k. 
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5. POSITIVE DEFINITE CASE 

Throughout this section 

definite matrix. Let 

305 

A = 1 laijl izj=i represents an n X n positive 

where 

- &j, i = ir, i,, . * . , i,, 
eij = 

6ii, i # ii, i,, . . .) i,. 

For any k = 0, 1, 2,. . . , n, we claim the following theorem. 

THEOREM 5.1. Let A and I$i,,,,,,ik) be as above. Then 

(a) det[A - U$] has k negative and n - k positive zeros. 

04 The zeyos of det[A - J#$,,~,,, &)I and det[A - lIi$,f?2,. .&f$ 
weakly interlace where i,,l is any new index appended to (il, i,, . . . , it). 

(c) The zeros of any n - 1 order principal minor of A - ,?I+!$ “weakly 

interlace” th,ose of A - nI$ relative to the origin in the analogous septse 

as in statement (ii) of Theorem 1.3, except that coincidences and coalescence 

of the zeros of these determinants may OCCUY. 

REMARK. (a) may be obtained as a result of the Inertia theorem. 

REMARK. Because simultaneous permutations of rows and columns 

preserves positive definiteness, without loss of generality, we may take 

(ii, G?, . . , G, G+r ) = (1, 2,. . , k, k + 1). In this event I$ = In(k) as 

defined in the introduction. 

I. Suppose inductively (a)-(c) is established for all positive definite 

matrices of order m < n. The following elementary perturbation facts 

will be helpful. 

LEMMA 5.1. Subject to the induction assumption I above, we can 

perturb any m x m, m < n, positive definite matrix B to B,, 6 sufficiently 

small, where B, is positive definite and B, --+ B as 6 + 0, such that 

det[B, - ;Il,(k)], and 

1 

Al,(L)] ( - ‘. . .’ i 1, i + 1,. . ., m 

[& - 1 ,. * .I i - 1, i + 1,. . ., m ) 

each have distinct roots. 
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Proof. The proof is by induction on m. For m = 2, the lemma is 

directly verified. We assume the lemma holds for any m - 1 x m - 1 

positive definite matrix, and hence we assume that B has been perturbed 

to Ba, 8 sufficiently small, which we rename B, such that B is positive 

definite, and 

1 i - 1, i + 1,. . ., m 
1” ’ ” i _ 1 i + 1 

I. * *, ,. . ., m 

has distinct roots. Let B, be identical with B, except for bii perturbed to 

bii + 6, 6 > 0. Thus B, is positive definite, and 

det[B, - ill,@)] 

1 - ’ i i . 
det[B ill,ck)] 6[B AI,(k)] 1” 

” 1, + 1,. ., m 
= - + - . _ 

,* * ., i 1 t i + 1 ,. . ., m 

The desired result follows easily using the fact that the roots of 

1 
[B _ ~~,(Jd] ” ’ ” 

i- l,i+ l,...,m 

1 ,*. .I i - 1, i + 1,. . ., m 

are distinct and weakly interlace the roots of det[B - AI,(k)]. 

LEMMA 5.2. We suppose the stipulations of Lemma 5.1 hold, and assume 

B is an m x m, m < n, positive definite matrix for which det[B - ,U,(k)] 

and 

1 
[B _ AI,(k)] ’ * * ’ ’ 

i - 1, i + 1,. . ., m 

l,..., i-l,i+l,..., m 

each have distinct roots. Then we can perturb B to B,, E sufficiently small, 

mhere B, is positive definite, B, + B as E -+ 0, such that det[B, - ;II,(k)] 

and 

1 
(B, _ AI,‘“‘) ’ ’ ’ ” 

i - 1, i + 1,. . ,, m 

l,..., i-l,i+l,..., m 

do not share a common zero. 

Proof. The proof is by induction on m. For m = 2, the result can be 

directly established. 
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Assume that B is such that 

[B _ Al,‘“‘] ” ’ ” 
i - 1, i + 1,. . ., m 

1 >. . .> i - 1, i + 1,. . ., m 

and 

1 
[B - AI,‘“)] ” 

..,i-Z,i+l,..., m 

1 I.. .I i-2,i+l,...,m 1 

each have distinct zeros and share no common zero. We may assume as 

well, in accordance with Lemma 5.1, that det:B - A17n(rc)] has distinct zeros. 

Let B, be identical with B except that bi,i+l and bi+l,i are replaced 

by bi,i+r + e and &+I,, + E, respectively. For E sufficiently small, B, persists 

to be positive definite. Observe that 

det[B, - U,lk)] 

= det[B - M,(k)] - $[B - H,(k)] 
1,. . .) i-2,i+l,...,m 
1 

>. . .> i-2,i+l,...,m 

- 2e[B - IU,‘~‘] 
I,..., i-2,i,i+l,..., m 

l,..., i-2,i-l,i+l,..., m ’ (5.1) 

The desired conclusion of the lemma can be deduced from (5.1) for F 

suitably small as a consequence of the fact that 

[B - AI,(“)] 
1,. . , i - 1, i + 1,. . . , m 

l,..., i-l,i+l,..., m 

and 

[B - iil,(“‘] 
1,. . . , i - 2, i + 1,. . . , m 

1,. . ., i-2,i+l,...,m 

share no common zero. 

Proof of Theorem 5.1. The cases n = 1, 2 are easily proved. 

Henceforth we assume the perturbations of-Lemmas 5.1-5.2 are effec- 

tive. Applying Sylvester’s determinant identity with pivot block 

1 
[A _ AI,(L)] ‘. . .’ 

K-l,k+2,...,n 

1 k-l,k+2,...,n 
= S(A) 

>. . .> 
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(54 

where 

1, 2,. . . , k, k + 2,. . . , 

i. 

n 
&C(‘) = LA - A1,‘k’l 1 2 . k k + 2 

I. .> 9 ,. ..> 1 
n J 

1,2,. . .) 

0 

k - 1, k + 1,. . ., n 
Qk(4 = [A - ~~nck'l 1 2 ,...f 1 k-l,k+l,...,n ’ 

( 

1, 2,. . .) k - 1, k, k + 2,. . . , n 
C,(A) = [A - AI,(k)] 

1, 2,. . . , k - 1, k + 1, k + 2,. . . , n ’ 

1 
‘. 

. . , k - 1, k + 1, k + 2,. . . , n 
ok(n) = [A - AI,(k)] 

1 ,. . .t k - 1, k, k + 2,. , n ’ 

k = 1, 2,. . . , n - 1. 

Since A is a symmetric matrix, it is clear that C,(I) = D,(I). At the 

zeros II, ii,, . . . , il,_l of R,(I) taking account of the nondegeneracy 

stipulation we have S(I) # 0. 

We see from (5.2) that 

Pn,k(;l)S@) = det[A - AI,(“)]S(A) = - [C,(l)]’ < 0, 

for 

2 = ill, &, . . .) 1,-l. (5.3) 

By the induction assumption S(&) strictly alternates in sign in the manner 

prescribed in (c), and we therefore deduce 

~,,,(&)~?L?0i+r) < 0, i = 1, 2,. . . ) n - 1. (5.4) 

The conclusions of (a) and (c) with regard to det[A - II,(“)] = Pn,k(jl) 

emanates directly based on the information of (5.3) and (5.4). The location 
of the zeros on the positive or negative axis is readily ascertained where 

the corresponding facts pertaining to the zeros of R,(A) are used. The 

orientation of the zeros of P,,,(I) with respect to the zeros of R,(i) and 

Qk(I) can also be discerned in this manner. (Consult the statement (c) 

of the theorem.) 
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The proof of (b) can now be done exploiting all the preceding facts. 

We omit the remaining formal steps since it involves repetition of the 

style of reasoning heavily exploited earlier in this paper. 

6. EXTENSION AND COUNTEREXAMPLES 

It is natural to inquire as to what extent do the theorems of Sets. 2-5 

remain in force for matrices which are not oscillatory or positive definite. 

W:e find that the results indeed persist for matrices conjugate to an 

oscillatory matrix subject to certain restrictions. The precise assertions 

are the content of Theorem 6.1 and its corollaries. 

THEOREM 6.1. Let A be an n x n oscillatory OY positive definite matrix 

and suppose U = ~~zQ&=~ is nonsingular and commutes with I,tk). 

Thus uij = 0 for 

{ 

l<i\ck<j<n 

1 l,(j<k<i<n ’ 

Then det[ U-lA U - II,(“)] vanishes at k negative and n - k positive values, 

which aye distinct in the case where A is oscillatory. 

Proof. The proof ensues instantly by multiplying IU-lAU - 11n(7c)l 

by [ UI on the left and by /U-l1 on the right, and observing that the char- 

acteristic polynomials IA - M,(k)l and 1 U-lAU - jlI,(k)j share identical 

roots. 

COROLLARY 6.1. Let A and U be as above. If U commutes with both 

I,ck) and Intk+l), then the roots of j U-IA U - jlI,ck) 1 and 1 U-IA U - ,?In(k+l) 1 

interlace, and the interlacing is strict for A oscillatory. 

Proof. See proof of Theorem 6.1. 

REMARK. The property of interlacing of the roots of the principal 

minors as in Theorem 3.1 and 5.1 does not carry over to the above situation. 

COROLLARY 6.2. If B = A-l, zp?heve A is an oscillatory matrix, then 

B satisfies the conditions of Theorem 6.1 and Corollary 6.1. 

Proof. Let K = / lkijlj&, where kij = dij(- l)i, i = 1,. . . , n. Then 

K-l = K, and B = K-lCK where C is an oscillatory matrix, since 
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where {ii’, . . . , j:_,} and (ii’, . . . , ii_,} are complementary sets of indices 

to {ii,. . ‘, i,} and {ii,. . . , i,}, respectively in (1,. . . , n} (cf. [6, p. 31). 

PROPOSITION 6.1. Let A be an n x n oscillatory OY positive definite 

matrix. Then A - 1Itk satisfies Theorems 3.1 a& 5.1 respectively, where 

I;‘b = &b,, j,i= I)...) n, 

and bi < 0, i = 1,. . . , k ; bi > 0, i = k + 1,. . . , n. 

Proof. Divide the ith row and ith column of 

A - Al$)b by vlbil, i = 1,...,92. 

COROLLARY 6.3. Let A be as irz Proposition 6.1. Let V avcd TV be 

arbitrary n x n laonsingular positive diagonal matrices. Then VA W - 

jlI,(lc) inherits the properties enuncinted in Theorems 3.1 and 5.1. 

COUNTEREXAMPLES 

(1) It is tempting to conjecture the validity, with natural modifica- 

tions, of the results of Sec. 3 for strict sign regular matrices. (These are 

matrices where all the minors of a prescribed order-say 9th maintain 

the same sign eg, ep = + 1 or - 1. Strictly totally positive matrices have 

ED = + 1.) One could also contemplate perhaps that the result of Theorem 

5.1 on positive definite matrices persists for the case where A is merely 

symmetric. Both these conjectures are quickly settled negatively by the 

example 

1 2 
A=2 1. 

[ 1 
In fact the roots of 

1-A 2 

2 I+ 

are complex (actually purely imaginary). 
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(2) Let A be oscillatory and consider the “characteristic polynomial” 

det[A - llCk’. 1 +dw*, .,a ' (6.1) 

(the notation is that of Sec. 5). l$i,,i,,., ,,ikj exhibits - 1 on the diagonal 

in the rows of indices ii, is,. . . , i, and + 1 elsewhere on the diagonal. 

Some roots of (6.1) may be complex. Take 

1 1 0 

A= 2 2 1 

i 1 2 2 1 

andk=l,ii=2,so 

l---1 1 0 

det[A - 1&/i] = 2 a+L 1 . 

2 2 l---1 

Its roots are 0, v- 1 and - 1/- 1. 

An appropriate small perturbation of A leads to a S.T.P. matrix, but 

where (6.1) continues to manifest complex roots. 

These preceding examples point up the fact that in dealing with 

oscillatory matrices the division of the + 1 and - l’s on the diagonal 

of I,fk) into at most two blocks is crucial. This is in sharp contrast to the 

case of positive definite matrices. 

One of the factors for the difference is this: The eigenvalues of an 

(n - 1) x (n - 1) principal minor of a positive definite matrix interlace 

the eigenvalues of the matrix while the corresponding property fails to 

hold for oscillatory matrices. 

We are indebted. to Dr. S. Friedland who suggested the possibility of 

Proposition 3.1, 
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