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Abstract

In this note we consider problems of uniqueness, smoothness and representation of linear combinations
of a finite number of ridge functions with fixed directions.
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1. Introduction

A ridge function, in its simplest format, is a multivariate function of the form

f (a · x),

defined for all x = (x1, . . . , xn) ∈ Rn , where a = (a1, . . . , an) ∈ Rn
\ {0} is a fixed non-zero

vector, called a direction, a · x =
n

j=1 a j x j is the usual inner product, and f is a real-valued
function defined on R. Note that

f (a · x)

is constant on the hyperplanes {x : a · x = c}. Ridge functions are relatively simple multivariate
functions. Ridge functions (formerly known as plane waves) were so-named in 1975 by Logan
and Shepp [11]. They appear in various areas and under numerous guises.

In this note we consider problems of uniqueness, smoothness and representation of linear
combinations of a finite number of ridge functions. That is, assume we are given a function F of
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the form

F(x) =

m
i=1

fi (ai
· x), (1.1)

where m is finite, and the ai are pairwise linearly independent vectors in Rn . We ask and
answer the following questions. If F is of a certain smoothness class, what can we say about
the smoothness of the fi ? How many different ways can we write F as a linear combination of
a finite number of ridge functions, i.e., to what extent is a representation of F in the form (1.1)
unique? And, finally, which other ridge functions f (a · x) can be written in the form (1.1) with
a ≠ αai , for any α ∈ R and i = 1, . . . , m?

In Section 4 we generalize the main results of this paper to finite linear combinations of
functions of the form

f (Ax)

where A is a fixed d × n matrix, 1 ≤ d < n, and f is a real-valued function defined on Rd . For
d = 1, this reduces to a ridge function.

2. Smoothness

Let Ck(Rn), k ∈ Z+, denote the usual set of real-valued functions with all derivatives of order
up to and including k being continuous. Assume F ∈ Ck(Rn) is of the form (1.1). What does
this imply, if anything, about the smoothness of the fi ? In the case m = 1 there is nothing to
prove. That is, if

F(x) = f1(a1
· x)

is in Ck(Rn) for some a1
≠ 0, then obviously f1 ∈ Ck(R). This same result holds when m = 2.

As the a1 and a2 are linearly independent, there exists a vector c ∈ Rn satisfying a1
· c = 0 and

a2
· c = 1. Thus

F(tc) = f1(a1
· tc) + f2(a2

· tc) = f1(0) + f2(t).

As F(tc) is in Ck(R), as a function of t , so is f2. The same result holds for f1.
However this result is no longer valid when m ≥ 3, without some assumptions on the fi . To

see this, let us recall that the Cauchy Functional Equation

g(x + y) = g(x) + g(y) (2.1)

has, as proved by Hamel [8] in 1905, very badly behaved solutions; see e.g., Aczél [1] for a
discussion of the solutions of this equation. As such, setting f1 = f2 = − f3 = g, we have very
badly behaved (and certainly not in Ck(R)) fi , i = 1, 2, 3, that satisfy

0 = f1(x1) + f2(x2) + f3(x1 + x2)

for all (x1, x2) ∈ R2. That is, the very smooth function on the left-side of this equation is a sum of
three unruly ridge functions. As shall shortly become evident, this Cauchy Functional Equation
is critical in the analysis of our problem for all m ≥ 3.

It was proved by Buhmann and Pinkus [2] that if F ∈ Ck(Rn), and if fi ∈ L1
loc(R) for each

i , then fi ∈ Ck(R) for each i , if k ≥ m − 1. The method of proof therein used smoothing
and generalized functions. In this note we remove the restriction k ≥ m − 1, have different
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assumptions on the fi , and provide an alternative, and we believe, much more natural and
elementary approach to this problem.

For ease of exposition, let us denote by B any class of real-valued functions f defined on R
such that if there is a function r ∈ C(R) such that f −r satisfies the Cauchy Functional Equation
(2.1), then f − r is necessarily linear, i.e., ( f − r)(x) = cx for some constant c, and all x ∈ R.
B includes, for example, the set of all functions that are continuous at a point, or monotonic on
an interval, or bounded on one side on a set of positive measure, or Lebesgue measurable; again
see e.g., Aczél [1].

Theorem 2.1. Assume F ∈ Ck(Rn) is of the form (1.1), i.e.,

F(x) =

m
i=1

fi (ai
· x),

where m is finite, and the ai are pairwise linearly independent vectors in Rn . Assume, in addition,
that each fi ∈ B. Then, necessarily, fi ∈ Ck(R) for i = 1, . . . , m.

Proof. The proof will be by induction on m. As we have seen, this result is valid when m = 1.
Let c ∈ Rn satisfy (c · am) = 0 and (c · ai ) = bi ≠ 0 for i = 1, . . . , m − 1. Such a c exists. Now

F(x + tc) − F(x) =

m
i=1

fi (ai
· x + tai

· c) − fi (ai
· x).

By construction we have fm(am
· x + tam

· c)− fm(am
· x) = fm(am

· x)− fm(am
· x) = 0, while

fi (ai
· x + tai

· c) − fi (ai
· x) = fi (ai

· x + tbi ) − fi (ai
· x) for i = 1, . . . , m − 1. Thus

H(x) := F(x + tc) − F(x) =

m−1
i=1

hi (ai
· x)

where hi (y) = fi (y + tbi ) − fi (y). Since H ∈ Ck(Rn), it follows by our induction assumption
that hi ∈ Ck(R). Note that this is valid for each and every t ∈ R.

We have therefore reduced our problem to the following. Assume b ≠ 0, and for each t ∈ R
the function h, defined by

h(y) = f (y + tb) − f (y),

is in Ck(R). When does this imply that f ∈ Ck(R)? A detailed answer is contained in the paper
by de Bruijn [4]. What is proved therein is that if h ∈ Ck(R), then f is necessarily of the form
f = r + s where r ∈ Ck(R) and s satisfies the Cauchy Functional Equation (2.1). Thus each
fi is of the form fi = ri + si , with ri and si as above. By our assumption, each fi is in B, and
from the definition of B it follows that fi − ri = si is a linear function, i.e., si (t) = ci t for some
constant ci . Thus fi = ri + si , where both ri , si ∈ Ck(R), implying that fi ∈ Ck(R). This is
valid for i = 1, . . . , m − 1, and hence also for i = m. �

Remark 2.1. In Theorem 2.1 it actually suffices to only assume that m − 2 of the functions
{ fi }

m
i=1 are in B. To see this, assume f1, . . . , fm−2 are in B. From the above proof it follows that

f1, . . . , fm−2 ∈ Ck(R). Thus

G(x) := F(x) −

m−2
i=1

fi (ai
· x) = fm−1(am−1

· x) + fm−2(am−2
· x)
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is a function in Ck(Rn). We now apply the reasoning in the case m = 2 that appeared prior to
the statement of Theorem 2.1.

Remark 2.2. In de Bruijn [4,5], there are delineated various classes of real-valued functions D
with the property that if

ht := ∆t f = f (· + t) − f (·) ∈ D

for all t ∈ R, then f is necessarily of the form f = r + s, where r ∈ D and s satisfies the
Cauchy Functional Equation. Some of these classes D are: Ck(R), functions with k continuous
derivatives; Ck(R), functions that are k times differentiable (but their kth derivative need not be
continuous); C∞(R) functions; analytic functions; functions which are absolutely continuous
on any finite interval; functions having bounded variation over any finite interval; algebraic
polynomials; trigonometric polynomials; and Riemann integrable functions. Theorem 2.1 can
be suitably restated for any of these classes D.

3. Uniqueness and representation

In this section we discuss the question of the uniqueness of the representation (1.1). We ask
when, and for which functions {gi }

k
i=1 and {hi }

ℓ
i=1, we can have

F(x) =

k
i=1

gi (bi
· x) =

ℓ
j=1

hi (ci
· x)

for all x ∈ Rn , where k and ℓ are finite, and the b1, . . . , bk, c1, . . . , cℓ are k + ℓ pairwise linearly
independent vectors in Rn? From linearity this is, of course, equivalent to the following. Assume

m
i=1

fi (ai
· x) = 0 (3.1)

for all x ∈ Rn , where m is finite, and the ai are pairwise linearly independent vectors in Rn . What
does this imply regarding the fi ? We first prove that with minimal requirements the fi must be
polynomials of degree ≤ m − 2. This generalizes a result of Buhmann and Pinkus [2]; see also
Falconer [7] and Petersen et al. [12]. We will later extend this result.

Let Π n
r denote the set of polynomials of total degree at most r in n variables. That is,

Π n
r =


|k|≤r

bkxk


where we use standard multi-index notation, i.e., bk ∈ R, k = (k1, . . . , kn) ∈ Zn

+, |k| =

k1 + · · · + kn , and xk
= xk1

1 · · · xkn
n .

Proposition 3.1. Assume (3.1) holds where m is finite, and the ai are pairwise linearly indepen-
dent vectors in Rn . Assume, in addition, that fi ∈ B, for i = 1, . . . , m. Then fi ∈ Π 1

m−2, i =

1, . . . , m.

For each c ∈ Rn let

Dc =

n
i=1

ci
∂

∂xi
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denote directional differentiation in the direction c. Assume f ∈ C1(R). When considering ridge
functions, the following simple formula is fundamental

Dc f (a · x) = (a · c) f ′(a · x).

Using this formula we easily prove Proposition 3.1.

Proof. For m = 1, the result is obviously true, where we define Π 1
−1 = {0}.

From de Bruijn [4] and the method of proof of Theorem 2.1, it follows that each fi is a
polynomial (see Remark 2.2). In fact we only need the sufficient smoothness of each fi which is
a direct consequence of Theorem 2.1. We now apply an elementary argument using directional
derivatives as may be found, for example, in Diaconis and Shahshahani [6]; see also Buhmann
and Pinkus [2].

Fix t ∈ {1, . . . , m}. For each j ∈ {1, . . . , m}, j ≠ t , let c j
∈ Rn satisfy

c j
· a j

= 0 and c j
· at

≠ 0.

This is possible since the ai are pairwise linearly independent. Now, as each fi is sufficiently
smooth,

0 =

m
j=1
j≠t

Dc j

m
i=1

fi (ai
· x)

=

m
i=1

 m
j=1
j≠t

(c j
· ai )

 f (m−1)
i (ai

· x)

=

m
j=1
j≠t

(c j
· at ) f (m−1)

t (at
· x).

Note that
m

j=1
j≠t

(c j
· at ) ≠ 0. Thus

f (m−1)
t (at

· x) = 0

for all x ∈ Rn . Therefore

f (m−1)
t (y) = 0

for all y ∈ R and ft is a polynomial of degree at most m − 2. �

By the same method of proof we in fact have the following.

Corollary 3.2. Assume F ∈ Π n
r has the form

F(x) =

m
i=1

fi (ai
· x),

where m is finite, and the ai are pairwise linearly independent vectors in Rn . Assume, in addition,
that fi ∈ B, for i = 1, . . . , m. Then fi ∈ Π 1

s , i = 1, . . . , m, where s = max{r, m − 2}.

One immediate consequence of Proposition 3.1 is the following which easily follows by taking
fi = f for i = 1, . . . , m.
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Proposition 3.3. Assume f ∈ B and f is not a polynomial. Then for any finite m, and pairwise
linearly independent vectors a1, . . . , am in Rn

\ {0}, the functions

{ f (a1
· x), . . . , f (am

· x)}

are linearly independent.

Proposition 3.3 is a generalization of a result by Dahmen and Micchelli [3], where they prove,
by different methods, that if the dimension of the span of the space { f (a · x) : a ∈ Rn

} is finite,
and f is Lebesgue measurable, then f is a polynomial.

Remark 3.1. It is often the case that the result of Proposition 3.1 can be obtained with fi ∈ Π 1
k ,

where k is significantly less than m −2. Recall that we took, for each t ∈ {1, . . . , m}, a collection
of m − 1 vectors c j

∈ Rn, j ∈ {1, . . . , m}, j ≠ t , such that c j
· a j

= 0, c j
· at

≠ 0, for j ≠ t , so
that

m
j=1
j≠t

(c j
· ai ) = 0

for all i ≠ t . This then implied that f (m−1)
t = 0, whence ft is a polynomial of degree at most

m − 2. If the a j are in generic position, i.e., any n of them are linearly independent, then we can
take c orthogonal to any n − 1 of the a j , j ≠ t , satisfying c · at

≠ 0. In this case we will only
need [(m − 2)/(n − 1)] + 1 vectors c to obtain the same desired result, and thus each ft must be
a polynomial of degree at most [(m − 2)/(n − 1)]. However as the a j are only pairwise linearly
independent, they can all lie in a subspace of dimension 2, and if this is the case (which is the
same as taking n = 2) then we do need m −1 c j ’s in the above proof. Moreover this is not just an
artifact of the method of proof. For each m there exist pairwise distinct ai

∈ Rn, i = 1, . . . , m,
and polynomials fi of exact degree m − 2 such that

m
i=1 fi (ai

· x) = 0. To see that this
holds, simply consider pairwise linearly independent ai of the form ai

= (ai
1, ai

2, 0, . . . , 0), i =

1, . . . , m. The polynomials (ai
· x)m−2, i = 1, . . . , m, are homogeneous of degree m − 2. The

space of homogeneous polynomials of degree m − 2 in two variables has dimension m − 1. Thus
some non-trivial linear combination of these (ai

· x)m−2, i = 1, . . . , m, vanishes identically.

We will consider this uniqueness result in more detail. What more can we say regarding the
polynomials fi satisfying (3.1)?

To this end, let Hn
r denote the set of homogeneous polynomials of degree r in n variables, i.e.,

Hn
r =


|k|=r

bkxk


.

Then we have the following.

Proposition 3.4. Assume m is finite, f, fi ∈ B, i = 1, . . . , m − 1, the ai are pairwise linearly
independent vectors in Rn , and a ≠ αai for any α ∈ R and i ∈ {1, . . . , m − 1}. Then we have

f (a · x) =

m−1
i=1

fi (ai
· x) (3.2)

if and only if f is a polynomial of exact degree r and for every q ∈ Hn
r satisfying q(ai ) = 0, i =

1, . . . , m − 1, we have q(a) = 0.
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Remark 3.2. Eq. (3.2) is, of course, a rewrite of (3.1) where f (a · x) = − fm(am
· x). Thus

we necessarily have r ≤ m − 2. However this automatically follows from the statement of
Proposition 3.4 since, for r ≥ m − 1, there always exists a q ∈ Hn

r satisfying q(ai ) = 0, i =

1, . . . , m − 1, and q(a) ≠ 0. Namely, choose ci
∈ Rn, i = 1, . . . , m − 1, satisfying ci

· ai
= 0

and ci
· a ≠ 0, and set q(x) = p(x)

m−1
i=1 (ci

· x), where p ∈ Hn
r−m+1 satisfies p(a) ≠ 0.

Proof. Assume (3.2) holds. Then from Proposition 3.1 it follows that f, fi ∈ Π 1
m−2, i = 1

, . . . , m − 1. Let

f (t) =

r
j=0

d j t
j , dr ≠ 0,

and

fi (t) =

ri
j=0

di j t
j , i = 1, . . . , m − 1,

where r, ri ≤ m − 2. We rewrite (3.2) as

r
j=0

d j (a · x) j
=

m−1
i=1

ri
j=0

di j (ai
· x) j .

A polynomial is identically zero if and only if each of its homogeneous components is zero. Thus

dr (a · x)r
=

m−1
i=1

dir (ai
· x)r , (3.3)

where we set dir = 0 if r > ri .
We claim that (3.3) can hold if and only if for every polynomial q ∈ Hn

r satisfying q(ai ) = 0,
for i such that dir ≠ 0, we have q(a) = 0. To prove this fact we use a variant of an argument in
Lin and Pinkus [10].

For k ∈ Zn
+, set

Dk
=

∂ |k|

∂xk1
1 · · · ∂xkn

n

.

Given q ∈ Hn
r ,

q(x) =


|k|=r

bkxk,

set

q(D) =


|k|=r

bk Dk.

When k ∈ Zn
+, |k| = r , a simple calculation shows that

Dk(a · x)r
= r ! ak.

Thus, for q ∈ Hn
r we have

q(D)(a · x)r
= r ! q(a).
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Given k1, k2
∈ Zn

+, |k1
| = |k2

| = r , we have

Dk1
xk2

= δk1,k2k1
1 ! · · · k1

n !.

This implies that every non-trivial linear functional ℓ on the finite-dimensional linear space Hn
r

may be represented by some q ∈ Hn
r via

ℓ(p) = q(D)p

for each p ∈ Hn
r . Now

(a · x)r
∈ span{(ai

· x)r
: dir ≠ 0}

if and only if every linear functional on Hn
r that annihilates the (ai

· x)r , where dir ≠ 0, i.e.,
every q ∈ Hn

r satisfying q(ai ) = 0 for all i with dir ≠ 0, also annihilates (a · x)r , i.e., satisfies
q(a) = 0. Thus, if (3.2) holds, then for every q ∈ Hn

r satisfying q(ai ) = 0, i = 1, . . . , m, we
have q(a) = 0.

Assume the converse, i.e., f is a polynomial of degree r and for every q ∈ Hn
r satisfying

q(ai ) = 0, i = 1, . . . , m − 1, we have q(a) = 0. Let

f (t) =

r
j=0

d j t
j , dr ≠ 0.

By the above argument we have that

dr (a · x)r
=

m−1
i=1

dir (ai
· x)r ,

for some set of {dir }
m−1
i=1 . We claim that a similar formula holds for all other (lower) powers. This

follows by suitable differentiation. Alternatively, based on the above, assume that for some s < r
we have aq ∈ Hn

s satisfyingq(ai ) = 0, i = 1, . . . , m − 1, andq(a) ≠ 0. Choose any p ∈ Hn
r−s

such that p(a) ≠ 0. Then q = pq ∈ Hn
r satisfies q(ai ) = 0, i = 1, . . . , m − 1, and q(a) ≠ 0,

contradicting our assumptions. Thus, for each j = 0, 1, . . . , r , we have

d j (a · x) j
=

m−1
i=1

di j (ai
· x) j ,

for some set of {di j }, proving that (3.2) holds. �

Based on Proposition 3.4 we can now present a strengthened version of Proposition 3.1.

Corollary 3.5. Assume that m is finite, fi ∈ B, i = 1, . . . , m, and the ai are pairwise linearly
independent vectors in Rn . Then we have

m
i=1

fi (ai
· x) = 0

if and only if for each i, fi is a polynomial of exact degree ri and if qi ∈ Hn
ri

satisfies
qi (a j ) = 0, j ∈ {1, . . . , m} \ {i}, then qi (ai ) = 0.
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4. Smoothness and uniqueness in the multivariate form

One possible generalization of a ridge function is to a multivariate function of the form

f (Ax)

defined for x ∈ Rn , where A is a fixed d × n matrix, 1 ≤ d < n, and f is a real-valued function
defined on Rd . For d = 1, this reduces to a ridge function.

As previously, assume we are given a function F of the form

F(x) =

m
i=1

fi (Ai x), (4.1)

where m is finite, the Ai are d ×n matrices, for some fixed d, 1 ≤ d < n, and each fi : Rd
→ R.

(In fact we could also consider Ai with different numbers of rows. The analysis would be much
the same.) We again ask what the smoothness of F implies regarding the smoothness of the fi .

The situation here is slightly more problematic, as redundancies can easily occur. Consider,
for example, when n = 3, m = 2, d = 2, and

A1
=


1 0 0
0 1 0


, A2

=


0 1 0
0 0 1


.

Thus

F(x1, x2, x3) = f1(x1, x2) + f2(x2, x3).

Setting f1(x1, x2) = g(x2) and f2(x2, x3) = −g(x2) for any arbitrary univariate function g, we
have

0 = f1(x1, x2) + f2(x2, x3),

and yet f1 and f2 do not exhibit any of the smoothness or polynomial properties of the left-hand-
side of this equation.

This simple example generalizes as follows. For convenience we will, in what follows, always
assume that the Ai are of full rank d .

Proposition 4.1. Assume there exist i, j ∈ {1, . . . , m}, i ≠ j , such that the 2d rows of Ai and
A j are linearly dependent. Then there exist non-smooth functions fi and f j such that

fi (Ai x) + f j (A j x) = 0

for all x ∈ Rn .

Proof. Since the 2d rows of Ai and A j are linearly dependent and, in addition, Ai , A j are of full
rank d , there exist ci , c j

∈ Rd
\ {0} such that

ci Ai
= c j A j

≠ 0.

Thus for all x ∈ Rn , and any arbitrary non-smooth univariate function g we have

g(ci Ai x) = g(c j A j x)

for all x ∈ Rn . Set

fi (Ai x) = g(ci Ai x),
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and

f j (A j x) = −g(c j A j x).

Thus, as above,

fi (Ai x) + f j (A j x) = 0

and yet fi and f j do not exhibit any of the smoothness or polynomial properties of the right-
hand-side of this equation. �

Note that the condition that the 2d rows of Ai and A j be linearly independent implies that
d ≤ n/2. Thus for d > n/2 we can never make any smoothness claims on the fi based on the
smoothness of F . This is unfortunate, as functions of the form (4.1) where d = n − 1 are of
interest.

When considering ridge functions, i.e., when d = 1, we very naturally demanded that the ai

be pairwise linearly independent. That is, we exactly claimed the linear independence of the 2d
rows of Ai and A j , for all i ≠ j , for d = 1.

What if we assume the linear independence of the 2d rows of Ai and A j for all i ≠ j? Do
the fi of (4.1) then inherit, under some weak assumptions, smoothness properties from F? The
answer is yes. Here we utilize a generalization of the one-dimensional results of de Bruijn [4,5];
see de Bruijn [4] and Kemperman [9]. Parallel to B of Section 2, let us define Bd to be any class
of real-valued functions f defined on Rd such that if there is a function r ∈ C(Rd) such that
f − r satisfies the multivariate Cauchy Functional Equation

g(s + t) = g(s) + g(t) (4.2)

for all s, t ∈ Rd , then f − r is necessarily linear, i.e., ( f − r)(s) = c · s for some constant vector
c ∈ Rd , and all s ∈ Rd . This holds, for example, if f is continuous at a point, or bounded on a
set of positive measure, etc. We now prove the multivariate analogue of Theorem 2.1.

Theorem 4.2. Assume F ∈ Ck(Rn) is of the form (4.1), where the 2d rows of Ai and A j are
linearly independent, for all i ≠ j . Assume, in addition, that each fi ∈ Bd . Then, necessarily,
fi ∈ Ck(Rd) for i = 1, . . . , m.

Remark 4.1. It is readily verified that the 2d rows of Ai and A j are linearly independent if and
only if

ker Ai
+ ker A j

= Rn .

Proof. The proof is much the same as the proof of Theorem 2.1, with slight modifications. As
previously, our proof will be by induction. The result is obviously valid for m = 1.

For given A1 and Am , let d1, . . . , dd
∈ Rn satisfy

Amd j
= 0, j = 1, . . . , d, (4.3)

and

A1d j
= e j , j = 1, . . . , d, (4.4)

where e j denotes the j th unit vector in Rd . Such d j exist by our assumption that the 2d rows of
A1 and Am are linearly independent.
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For each choice of p1, . . . , pd , consider

H(x) := F


x +

d
j=1

p j d j


− F(x)

=

m
i=1

fi


Ai x + Ai


d

j=1

p j d j


− fi (Ai x).

Set

hi (y) = fi


y +

d
j=1

p j Ai d j


− fi (y), i = 1, . . . , m,

for y ∈ Rd . From (4.3),

hm(y) = 0,

and from (4.4),

h1(y) = f1(y + p) − f1(y)

where p = (p1, . . . , pd).
Thus,

H(x) =

m−1
i=1

hi (Ai x),

and by the induction hypothesis we may infer that hi ∈ Ck(Rd) for each i = 1, . . . , m − 1. In
particular, we have that for each and every p ∈ Rd , the function

h1(y) = f1(y + p) − f1(y)

is in Ck(Rd). From Kemperman [9, Section 5], see also de Bruijn [4, p. 196], it follows that
f1 = r1 + g1, where r1 ∈ Ck(Rd) and g1 satisfies the Cauchy Functional Equation (4.2). Since
f1 ∈ Bd we have g1(s) = c · s for some constant vector c ∈ Rd , and therefore f1 ∈ Ck(Rd).
Thus

F(x) − f1(A1x) =

m
i=2

fi (Ai x)

is in Ck(Rn), and again by our induction assumption we have that fi ∈ Ck(Rd) for i =

2, . . . , m. �

Using Theorem 4.2 and the ideas from Proposition 3.1, we obtain an analogue of this latter
result, namely:

Proposition 4.3. Assume

0 =

m
i=1

fi (Ai x)

for all x ∈ Rn , where m is finite, and the 2d rows of Ai and A j are linearly independent, for all
i ≠ j . Assume, in addition, that each fi ∈ Bd . Then fi ∈ Π d

m−2, i = 1, . . . , m.



736 A. Pinkus / Indagationes Mathematicae 24 (2013) 725–738

Proof. From Theorem 4.2 it follows that each of the fi is infinitely smooth. For m = 1 the result
is obviously true, where we define Π d

−1 = {0}. Recall that for d ∈ Rn

Dd =

n
i=1

di
∂

∂xi
.

In addition, if A is a d × n matrix with row vectors a1, . . . , ad , then

Dd f (Ax) =

d
k=1

(ak
· d)

∂ f

∂yk
(Ax)

where by ∂ f
∂yk

we mean the derivative of f with respect to its kth argument.

The proof is notationally challenging, so let us first detail the case m = 2. Let d j
∈ Rn, j =

1, . . . , d, satisfy

A1d j
= 0, j = 1, . . . , d,

and

A2d j
= e j , j = 1, . . . , d,

where e j denotes the j th unit vector in Rd . Such d j exist since the 2d rows of A1 and A2 are
linearly independent. Thus

0 = Dd j [ f1(A1x) + f2(A2x)] =
∂ f2

∂y j
(A2x), j = 1, . . . , d.

As A2 is of full rank this implies that

∂ f2

∂y j
= 0, j = 1, . . . , d,

and f2 ∈ Π d
0 (a constant function). The same result holds for f1, proving the case m = 2.

For general m, let j1, . . . , jm−1 be arbitrary values in {1, . . . , d}. We will prove that for all
such j1, . . . , jm−1 we have

∂m−1 fi

∂y j1 · · · ∂y jm−1

= 0, i = 1, . . . , m.

This implies that fi ∈ Π d
m−2, i = 1, . . . , m. We prove this result for i = m.

For each k = 1, . . . , m − 1, and j1, . . . , jm−1 ∈ {1, . . . , d}, let d jk ,k ∈ Rn satisfy

Akd jk ,k = 0,

and

Amd jk ,k = e jk .

Such vectors exist since the 2d rows of Ak and Am are linearly independent. From above we
have that

Dd jk ,k gk(Akx) = 0



A. Pinkus / Indagationes Mathematicae 24 (2013) 725–738 737

for every choice of sufficiently smooth gk . Since the differential operators Dd jk ,k commute, it
therefore follows that

m−1
k=1

Dd jk ,k fi (Ai x) = 0, i = 1, . . . , m − 1.

Furthermore

Dd jk ,k fm(Amx) =
∂ fm

∂y jk
(Amx).

Thus

0 =

m−1
k=1

Dd jk ,k

m
i=1

fi (Ai x)

=

m−1
k=1

Dd jk ,k fm(Amx)

=
∂m−1 fm

∂y j1 · · · ∂y jm−1

(Amx).

As Am is of full rank, and the above holds for all j1, . . . , jm−1 ∈ {1, . . . , d} this implies that
fm ∈ Π d

m−2. �

Recall that Proposition 4.3 is, in fact, a result concerning the uniqueness, up to polynomials
of some order, of the representation of these multivariate ridge functions.

Remark 4.2. For the sake of convenience we stated the results of this paper over Rn . In fact they
hold, mutatis mutandis, over any open set in Rn .

Acknowledgment
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